Groups of symmetric crosscap number less than or equal to 17

被引:1
作者
Bacelo, Adrian [1 ]
机构
[1] Univ Complutense, Fac Matemat, Dept Algebra, E-28040 Madrid, Spain
关键词
Symmetric crosscap number; Klein surfaces; UNBORDERED KLEIN SURFACES; FULL GROUP; AUTOMORPHISMS;
D O I
10.26493/1855-3974.1341.5a3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Every finite group G acts on some non-orientable unbordered surfaces. The minimal topological genus of those surfaces is called the symmetric crosscap number of G. It is known that 3 is not the symmetric crosscap number of any group but it remains unknown whether there are other such values, called gaps. In this paper we obtain the groups with symmetric crosscap number less than or equal to 17. Also, we obtain six infinite families with symmetric crosscap number of the form 12k + 3.
引用
收藏
页码:173 / 190
页数:18
相关论文
共 30 条
[1]  
Alling NL., 1971, Foundations of the theory of Klein surfaces. Lecture Notes in Mathematics, DOI [10.1007/BFb0060987, DOI 10.1007/BFB0060987]
[2]  
[Anonymous], THESIS
[3]   FILLING GAPS OF THE SYMMETRIC CROSSCAP SPECTRUM [J].
Bacelo, A. ;
Etayo, J. J. ;
Martinez, E. .
MOSCOW MATHEMATICAL JOURNAL, 2017, 17 (03) :357-369
[4]  
Bacelo A., 2015, THESIS
[5]  
Bacelo A., 2013, THESIS
[6]   The full group of automorphisms of non-orientable unbordered Klein surfaces of topological genus 6 [J].
Bacelo, Adrian .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2018, 112 (02) :391-405
[7]   The full group of automorphisms of non-orientable unbordered Klein surfaces of topological genus 7 [J].
Bacelo, Adrian .
REVISTA MATEMATICA COMPLUTENSE, 2018, 31 (01) :247-261
[9]   The full group of automorphisms of non-orientable unbordered Klein surfaces of topological genus 3, 4 and 5 [J].
Bujalance, E. ;
Etayo, J. J. ;
Martinez, E. .
REVISTA MATEMATICA COMPLUTENSE, 2014, 27 (01) :305-326
[10]   Determination of all regular maps of small genus [J].
Conder, M ;
Dobcsányi, P .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2001, 81 (02) :224-242