Almost sure convergence of the minimum bipartite matching functional in Euclidean space

被引:12
作者
De Monvel, JHB [1 ]
Martin, OC
机构
[1] Karolinska Inst, Ctr Hearing & Commun Res, S-17176 Stockholm, Sweden
[2] Univ Paris 11, Lab Phys Theor & Modeles Stat, F-91405 Orsay, France
关键词
D O I
10.1007/s00493-002-0004-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L-N = L-MBM (X-1,...,X-N; Y-1,...,Y-N) be the minimum length of a bipartite matching between two sets of points in R-d, where X-1,...,X-N,... and Y-1,...,Y-N,... are random points independently and uniformly distributed in [0, 1](d). We prove that for d greater than or equal to 3, L-N/N1-1/d converges with probability one to a constant beta(MBM)(d) > 0 as N --> infinity.
引用
收藏
页码:523 / 530
页数:8
相关论文
共 14 条
[1]   ON OPTIMAL MATCHINGS [J].
AJTAI, M ;
KOMLOS, J ;
TUSNADY, G .
COMBINATORICA, 1984, 4 (04) :259-264
[2]   The ζ(2) limit in the random assignment problem [J].
Aldous, DJ .
RANDOM STRUCTURES & ALGORITHMS, 2001, 18 (04) :381-418
[3]  
[Anonymous], P CAMB PHILO SOC, DOI DOI 10.1017/S0305004100034095
[4]  
Azuma K., 1967, TOHOKU MATH J, V19, P357, DOI DOI 10.2748/TMJ/1178243286
[5]   AN ASYMPTOTIC DETERMINATION OF THE MINIMUM SPANNING TREE AND MINIMUM MATCHING CONSTANTS IN GEOMETRICAL-PROBABILITY [J].
BERTSIMAS, DJ ;
VANRYZIN, G .
OPERATIONS RESEARCH LETTERS, 1990, 9 (04) :223-231
[6]   Mean field and corrections for the Euclidean minimum matching problem [J].
deMonvel, JHB ;
Martin, OC .
PHYSICAL REVIEW LETTERS, 1997, 79 (01) :167-170
[7]   Comparing mean field and Euclidean matching problems [J].
Houdayer, J ;
de Monvel, JHB ;
Martin, OC .
EUROPEAN PHYSICAL JOURNAL B, 1998, 6 (03) :383-393
[8]   ON THE SOLUTION OF THE RANDOM LINK MATCHING PROBLEMS [J].
MEZARD, M ;
PARISI, G .
JOURNAL DE PHYSIQUE, 1987, 48 (09) :1451-1459
[9]   LIMIT THEOREMS AND RATES OF CONVERGENCE FOR EUCLIDEAN FUNCTIONALS [J].
Redmond, C. ;
Yukch, J. E. .
ANNALS OF APPLIED PROBABILITY, 1994, 4 (04) :1057-1073
[10]  
Rhee W.T., 1993, ANN APPL PROBAB, P794