DeepOPF: Deep Neural Networks for Optimal Power Flow

被引:12
作者
Pan, Xiang [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Informat Engn, Hong Kong, Peoples R China
来源
BUILDSYS'21: PROCEEDINGS OF THE 2021 ACM INTERNATIONAL CONFERENCE ON SYSTEMS FOR ENERGY-EFFICIENT BUILT ENVIRONMENTS | 2021年
关键词
Deep learning; Deep neural network; Optimal power flow;
D O I
10.1145/3486611.3492390
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We develop a Deep Neural Network (DNN) approach, namely Deep-OPF, for solving optimal power flow (OPF) problems that are critical for daily power system operation. DeepOPF leverages a DNN model to depict the high-dimensional load-to-solution mapping and can directly solve the OPF problem upon given load, excelling in fast computation process and desirable scalability. Simulation results for IEEE test cases show that DeepOPF generates feasible solutions with negligible (<0.2%) optimality loss and accelerates the computation time by up to two orders of magnitude as compared to a state-of-the-art solver.
引用
收藏
页码:250 / 251
页数:2
相关论文
共 4 条
[1]   Optimal power flow: A bibliographic survey I Formulations and deterministic methods [J].
Frank S. ;
Steponavice I. ;
Rebennack S. .
Energy Systems, 2012, 3 (03) :221-258
[2]  
Pan X, 2022, Arxiv, DOI [arXiv:2007.01002, DOI 10.48550/ARXIV.2007.01002, DOI 10.1109/JSYST.2022.3201041]
[3]   DeepOPF: A Deep Neural Network Approach for Security-Constrained DC Optimal Power Flow [J].
Pan, Xiang ;
Zhao, Tianyu ;
Chen, Minghua ;
Zhang, Shengyu .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2021, 36 (03) :1725-1735
[4]   DeepOPF: Deep Neural Network for DC Optimal Power Flow [J].
Pan, Xiang ;
Zhao, Tianyu ;
Chen, Minghua .
2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CONTROL, AND COMPUTING TECHNOLOGIES FOR SMART GRIDS (SMARTGRIDCOMM), 2019,