Sample size calculation for meta-epidemiological studies

被引:23
作者
Giraudeau, Bruno [1 ]
Higgins, Julian P. T. [2 ]
Tavernier, Elsa [3 ,4 ,5 ]
Trinquart, Ludovic [1 ,6 ,7 ,8 ]
机构
[1] Ctr Cochrane Francais, Paris, France
[2] Univ Bristol, Sch Social & Community Med, Bristol, Avon, England
[3] INSERM, U1153, Paris, France
[4] INSERM CIC 1415, Tours, France
[5] CHRU Tours, Tours, France
[6] Univ Paris 05, Sorbonne Paris Cite, Paris, France
[7] Hop Hotel Dieu, AP HP, Ctr Epidemiol Clin, F-75181 Paris, France
[8] Columbia Univ, Mailman Sch Publ Hlth, Dept Epidemiol, New York, NY USA
基金
英国医学研究理事会;
关键词
meta-epidemiological study; multilevel model; sample size; SYSTEMATIC-REVIEWS; COCHRANE-DATABASE; METAANALYSIS; TRIALS;
D O I
10.1002/sim.6627
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Meta-epidemiological studies are used to compare treatment effect estimates between randomized clinical trials with and without a characteristic of interest. To our knowledge, there is presently nothing to help researchers to a priori specify the required number of meta-analyses to be included in a meta-epidemiological study. We derived a theoretical power function and sample size formula in the framework of a hierarchical model that allows for variation in the impact of the characteristic between trials within a meta-analysis and between meta-analyses. A simulation study revealed that the theoretical function overestimated power (because of the assumption of equal weights for each trial within and between meta-analyses). We also propose a simulation approach that allows for relaxing the constraints used in the theoretical approach and is more accurate. We illustrate that the two variables that mostly influence power are the number of trials per meta-analysis and the proportion of trials with the characteristic of interest. We derived a closed-form power function and sample size formula for estimating the impact of trial characteristics in meta-epidemiological studies. Our analytical results can be used as a 'rule of thumb' for sample size calculation for a meta-epidemiologic study. A more accurate sample size can be derived with a simulation study. Copyright (C) 2015 John Wiley & Sons, Ltd.
引用
收藏
页码:239 / 250
页数:12
相关论文
共 12 条
[1]   Characteristics of meta-analyses and their component studies in the Cochrane Database of Systematic Reviews: a cross-sectional, descriptive analysis [J].
Davey, Jonathan ;
Turner, Rebecca M. ;
Clarke, Mike J. ;
Higgins, Julian P. T. .
BMC MEDICAL RESEARCH METHODOLOGY, 2011, 11
[2]   Sequential methods for random-effects meta-analysis [J].
Higgins, Julian P. T. ;
Whitehead, Anne ;
Simmonds, Mark .
STATISTICS IN MEDICINE, 2011, 30 (09) :903-921
[3]   Improved tests for a random effects meta-regression with a single covariate [J].
Knapp, G ;
Hartung, J .
STATISTICS IN MEDICINE, 2003, 22 (17) :2693-2710
[4]   WinBUGS - A Bayesian modelling framework: Concepts, structure, and extensibility [J].
Lunn, DJ ;
Thomas, A ;
Best, N ;
Spiegelhalter, D .
STATISTICS AND COMPUTING, 2000, 10 (04) :325-337
[5]   Epidemiology and reporting characteristics of systematic reviews [J].
Moher, David ;
Tetzlaff, Jennifer ;
Tricco, Andrea C. ;
Sampson, Margaret ;
Altman, Douglas G. .
PLOS MEDICINE, 2007, 4 (03) :447-455
[6]   Influence of Reported Study Design Characteristics on Intervention Effect Estimates From Randomized, Controlled Trials [J].
Savovic, Jelena ;
Jones, Hayley E. ;
Altman, Douglas G. ;
Harris, Ross J. ;
Jueni, Peter ;
Pildal, Julie ;
Als-Nielsen, Bodil ;
Balk, Ethan M. ;
Gluud, Christian ;
Gluud, Lise Lotte ;
Ioannidis, John P. A. ;
Schulz, Kenneth F. ;
Beynon, Rebecca ;
Welton, Nicky J. ;
Wood, Lesley ;
Moher, David ;
Deeks, Jonathan J. ;
Sterne, Jonathan A. C. .
ANNALS OF INTERNAL MEDICINE, 2012, 157 (06) :429-U97
[7]   Multivariable modelling for meta-epidemiological assessment of the association between trial quality and treatment effects estimated in randomized clinical trials [J].
Siersma, V. ;
Als-Nielsen, B. ;
Chen, W. ;
Hilden, J. ;
Gluud, L. L. ;
Gluud, C. .
STATISTICS IN MEDICINE, 2007, 26 (14) :2745-2758
[8]  
Snijders T.A., 2012, MULTILEVEL ANAL INTR
[9]   Statistical methods for assessing the influence of study characteristics on treatment effects in 'meta-epidemiological' research [J].
Sterne, JAC ;
Jüni, P ;
Schulz, KF ;
Altman, DG ;
Bartlett, C ;
Egger, M .
STATISTICS IN MEDICINE, 2002, 21 (11) :1513-1524
[10]   Commentary: Meta-epidemiology, meta-meta-epidemiology or network meta-epidemiology? [J].
Trinquart, Ludovic ;
Dechartres, Agnes ;
Ravaud, Philippe .
INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2013, 42 (04) :1131-1133