QUANTUM TEICHMULLER THEORY AND TQFT

被引:0
作者
Andersen, J. E. [1 ]
Kashaev, R. M. [2 ]
机构
[1] Univ Aarhus, Ctr Quantum Geometry Moduli Spaces, DK-8000 Aarhus, Denmark
[2] Univ Geneva, Sect Math, CH-12114 Geneva, Switzerland
来源
XVIITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS | 2014年
基金
瑞士国家科学基金会; 新加坡国家研究基金会;
关键词
Quantum theory; Teichmuller space; TQFT; VOLUME CONJECTURE; QUANTIZATION; POLYNOMIALS;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By using quantum Teichmuller theory, a new type of three-dimensional TQFT has been constructed with the following distinguishing features: it uses the combinatorial framework of shaped triangulations; it takes its values in the space of tempered distributions; the fundamental building block of the theory is given by Faddeev's quantum dilogarithm. The semi-classical behavior and the geometrical ingredients suggest that the constructed TQFT is related to exact solution of quantum Chern-Simons theory with gauge group SL(2, C). We also remark that quantum Teichmuller theory itself admits an additional real parameter which preserves unitarity but affects the projective factor in the corresponding mapping class group representation.
引用
收藏
页码:684 / 692
页数:9
相关论文
共 50 条
  • [31] Non-Semisimple TQFT's and BPS q-Series
    Costantino, Francesco
    Gukov, Sergei
    Putrov, Pavel
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2023, 19
  • [32] Geometric triangulations and the Teichmüller TQFT volume conjecture for twist knots
    Ben Aribi, Fathi
    Gueritaud, Francois
    Piguet-Nakazawa, Eiichi
    QUANTUM TOPOLOGY, 2023, 14 (02) : 285 - 406
  • [33] Towards super Teichmuiller spin TQFT
    Aghaei, Nezhla
    Pawelkiewicz, M. K.
    Yamazaki, Masahito
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2022, 26 (02) : 245 - 293
  • [34] Teichmuller rays and the Gardiner-Masur boundary of Teichmuller space
    Miyachi, Hideki
    GEOMETRIAE DEDICATA, 2008, 137 (01) : 113 - 141
  • [35] Separation of conditions as a prerequisite for quantum theory
    De Raedt, Hans
    Katsnelson, Mikhail, I
    Willsch, Dennis
    Michielsen, Kristel
    ANNALS OF PHYSICS, 2019, 403 : 112 - 135
  • [36] Curvatures on the Teichmuller Curve
    Guo, Ren
    Gupta, Subhojoy
    Huang, Zheng
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2011, 60 (05) : 1673 - 1692
  • [37] Teichmuller rays and the Gardiner-Masur boundary of Teichmuller space II
    Miyachi, Hideki
    GEOMETRIAE DEDICATA, 2013, 162 (01) : 283 - 304
  • [38] Factorization homology and 4D TQFT
    Kirillov, Alexander, Jr.
    Tham, Ying Hong
    QUANTUM TOPOLOGY, 2022, 13 (01) : 1 - 54
  • [39] The Meaning of Quantum Theory Reinterpreting the Copenhagen Interpretation
    Goernitz, Th.
    ADVANCED SCIENCE LETTERS, 2011, 4 (11-12) : 3727 - 3734
  • [40] On angles in Teichmuller spaces
    Hu, Yun
    Shen, Yuliang
    MATHEMATISCHE ZEITSCHRIFT, 2014, 277 (1-2) : 181 - 193