By using quantum Teichmuller theory, a new type of three-dimensional TQFT has been constructed with the following distinguishing features: it uses the combinatorial framework of shaped triangulations; it takes its values in the space of tempered distributions; the fundamental building block of the theory is given by Faddeev's quantum dilogarithm. The semi-classical behavior and the geometrical ingredients suggest that the constructed TQFT is related to exact solution of quantum Chern-Simons theory with gauge group SL(2, C). We also remark that quantum Teichmuller theory itself admits an additional real parameter which preserves unitarity but affects the projective factor in the corresponding mapping class group representation.
机构:
Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
Univ So Calif, Dept Phys Astron, Los Angeles, CA 90089 USAUniv So Calif, Dept Math, Los Angeles, CA 90089 USA
Penner, R. C.
Saric, Dragomir
论文数: 0引用数: 0
h-index: 0
机构:
SUNY Stony Brook, Inst Math Sci, Stony Brook, NY 11794 USAUniv So Calif, Dept Math, Los Angeles, CA 90089 USA
机构:
Ecole Polytech, Ctr Math Laurent Schwartz, UMR 7640, F-91128 Palaiseau, FranceEcole Polytech, Ctr Math Laurent Schwartz, UMR 7640, F-91128 Palaiseau, France
Marche, Julien
Paul, Thierry
论文数: 0引用数: 0
h-index: 0
机构:
Ecole Polytech, Ctr Math Laurent Schwartz, UMR 7640, F-91128 Palaiseau, FranceEcole Polytech, Ctr Math Laurent Schwartz, UMR 7640, F-91128 Palaiseau, France
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100080, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100080, Peoples R China