Nodal solutions for noncoercive nonlinear Neumann problems with indefinite potential

被引:12
作者
He, Tieshan [1 ]
Huang, Yehui [1 ]
Liang, Kaihao [1 ]
Lei, Youfa [1 ]
机构
[1] Zhongkai Univ Agr & Engn, Sch Computat Sci, Guangzhou 510225, Guangdong, Peoples R China
关键词
Nonhomogeneous differential operator; Nodal solution; Variational approach; Gradient flow; Superlinear reaction; NONHOMOGENEOUS DIFFERENTIAL OPERATOR; ELLIPTIC-EQUATIONS; P-LAPLACIAN; MULTIPLE SOLUTIONS; NONTRIVIAL SOLUTIONS;
D O I
10.1016/j.aml.2017.03.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a nonlinear Neumann problem driven by a nonhomogeneous differential operator and an indefinite potential. Using variational methods together with flow invariance arguments, we show that the problem has at least one nodal solution. The result presented in this paper gives an answer to the open question raised by Papageorgiou and Radulescu (2016). (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:67 / 73
页数:7
相关论文
共 24 条
[11]   NONLINEAR NEUMANN EQUATIONS DRIVEN BY A NONHOMOGENEOUS DIFFERENTIAL OPERATOR [J].
Hu, Shouchuan ;
Papageorgiou, Nikolaos S. .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2011, 10 (04) :1055-1078
[12]   MULTIPLE SOLUTIONS FOR NONLINEAR ELLIPTIC EQUATIONS WITH AN ASYMMETRIC REACTION TERM [J].
Kyritsi, Sophia Th ;
Papageorgiou, Nikolaos S. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (06) :2469-2494
[13]   BOUNDARY-REGULARITY FOR SOLUTIONS OF DEGENERATE ELLIPTIC-EQUATIONS [J].
LIEBERMAN, GM .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1988, 12 (11) :1203-1219
[14]   Invariant sets of descending flow in critical point theory with applications to nonlinear differential equations [J].
Liu, ZL ;
Sun, JX .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 172 (02) :257-299
[15]   Sign-changing and multiple solutions of Kirchhoff type problems without the PS condition [J].
Mao, Anmin ;
Zhang, Zhitao .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (03) :1275-1287
[16]   Strong maximum principles for supersolutions of quasilinear elliptic equations [J].
Montenegro, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 37 (04) :431-448
[17]   MULTIPLE SOLUTIONS FOR NONLINEAR NEUMANN PROBLEMS DRIVEN BY A NONHOMOGENEOUS DIFFERENTIAL OPERATOR [J].
Motreanu, D. ;
Papageorgiou, N. S. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (10) :3527-3535
[18]   Multiple existence results of solutions for quasilinear elliptic equations with a nonlinearity depending on a parameter [J].
Motreanu, Dumitru ;
Tanaka, Mieko .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2014, 193 (05) :1255-1282
[19]  
Mugnai D, 2012, ANN SCUOLA NORM-SCI, V11, P729
[20]  
Papageorgiou NS, 2009, RACSAM REV R ACAD A, V103, P177, DOI 10.1007/BF03191850