Nodal solutions for noncoercive nonlinear Neumann problems with indefinite potential

被引:12
作者
He, Tieshan [1 ]
Huang, Yehui [1 ]
Liang, Kaihao [1 ]
Lei, Youfa [1 ]
机构
[1] Zhongkai Univ Agr & Engn, Sch Computat Sci, Guangzhou 510225, Guangdong, Peoples R China
关键词
Nonhomogeneous differential operator; Nodal solution; Variational approach; Gradient flow; Superlinear reaction; NONHOMOGENEOUS DIFFERENTIAL OPERATOR; ELLIPTIC-EQUATIONS; P-LAPLACIAN; MULTIPLE SOLUTIONS; NONTRIVIAL SOLUTIONS;
D O I
10.1016/j.aml.2017.03.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a nonlinear Neumann problem driven by a nonhomogeneous differential operator and an indefinite potential. Using variational methods together with flow invariance arguments, we show that the problem has at least one nodal solution. The result presented in this paper gives an answer to the open question raised by Papageorgiou and Radulescu (2016). (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:67 / 73
页数:7
相关论文
共 24 条
[1]   On p-superlinear equations with a nonhomogeneous differential operator [J].
Aizicovici, Sergiu ;
Papageorgiou, Nikolaos S. ;
Staicu, Vasile .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2013, 20 (02) :151-175
[2]   Existence of multiple solutions with precise sign information for superlinear Neumann problems [J].
Aizicovici, Sergiu ;
Papageorgiou, Nikolaos S. ;
Staicu, Vasile .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2009, 188 (04) :679-715
[3]   On a superlinear elliptic p-Laplacian equation [J].
Bartsch, T ;
Liu, ZL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 198 (01) :149-175
[4]  
Chang K.-c., 1993, Progress in Nonlinear Differential Equations and their Applications, V6
[5]   Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results [J].
Damascelli, L .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1998, 15 (04) :493-516
[6]   Fucik spectrum, sign-changing, and multiple solutions for semilinear elliptic boundary value problems with resonance at infinity [J].
Dancer, EN ;
Zhang, ZT .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 250 (02) :449-464
[7]   Resonant equations with the Neumann p-Laplacian plus an indefinite potential [J].
Gasinski, Leszek ;
Papageorgiou, Nikolaos S. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 422 (02) :1146-1179
[8]   MULTIPLICITY OF SOLUTIONS FOR NEUMANN PROBLEMS WITH AN INDEFINITE AND UNBOUNDED POTENTIAL [J].
Gasinski, Leszek ;
Papageorgiou, Nikolaos S. .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (05) :1985-1999
[9]   Nontrivial solutions for Neumann problems with an indefinite linear part [J].
Gasinski, Leszek ;
Papageorgiou, Nikolaos S. .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (06) :2666-2675
[10]   THREE NONTRIVIAL SOLUTIONS FOR PERIODIC PROBLEMS WITH THE p-LAPLACIAN AND A p-SUPERLINEAR NONLINEARITY [J].
Gasinski, Leszek ;
Papageorgiou, Nikolaos S. .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (04) :1421-1437