Microplastics: A major source of phthalate esters in aquatic environments

被引:113
作者
Cao, Yaru [1 ,4 ]
Lin, Huiju [1 ]
Zhang, Kai [1 ,2 ,3 ,4 ,6 ]
Xu, Shaopeng [1 ]
Yan, Meng [1 ,3 ,4 ]
Leung, Kenneth M. Y. [1 ,3 ]
Lam, Paul K. S. [1 ,3 ,5 ]
机构
[1] City Univ Hong Kong, Dept Chem, State Key Lab Marine Pollut, Hong Kong, Peoples R China
[2] Macau Univ Sci & Technol, Macao Environm Res Inst, Natl Observat & Res Stn Coastal Ecol Environm Maca, Taipa 999078, Macao Special A, Peoples R China
[3] Southern Marine Sci & Engn Guangdong Lab Zhuhai, Zhuhai 519080, Peoples R China
[4] City Univ Hong Kong, Res Ctr Oceans & Human Hlth, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
[5] Hong Kong Metropolitan Univ, Off President, Hong Kong, Hong Kong Speci, Peoples R China
[6] Macau Univ Sci & Technol, Macao Environm Res Inst, Taipa, Macao Special A, Peoples R China
关键词
Microplastics; Leaching; Additives; Scanning electron; microscopy; Kinetic process; PLASTICS; WATER; FATE; NANOPLASTICS; ADDITIVES; MIGRATION; RELEASE; SURFACE; IMPACT; RIVER;
D O I
10.1016/j.jhazmat.2022.128731
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Phthalate esters (PAEs) are predominant additives in plastics, their widespread contamination in aquatic environments has raised global concern. Here, twelve plastic products were prepared as microplastics to investigate their release behaviors of PAEs. Six out of 15 PAEs were quantified after 14 days of incubation in water. The leaching potentials were plastic type-specific, where the pencil case (polyvinyl chloride, PVC) represented the highest migrations with total n-expressionry sumexpressiontion (15) PAEs concentration of 6660 +/- 513 ng/g, followed by the cleaning brush-1 (polyamide, PA, ~1830 ng/g) and rubber glove (1390 +/- 57.5 ng/g). Conversely, the straw (polypropylene, PP), cleaning brush-2 (polyethylene terephthalate, PET) and shampoo bottle (PET) released the lowest amounts of PAEs, with 50.3 +/- 8.21, 93.9 +/- 91.8 and 104.35 ng/g, respectively. The release patterns of PAE congeners were polymer type-related, where di -n-butyl phthalate (DBP) dominated the leaching from PA, PP and PET microplastics (47-84%), diethyl phthalate leached the most from PVC and rubber microplastics (45-92%), while diisobutyl phthalate and DBP dominated the leaching from PE microplastics (68-94%). Water chemical properties could affect PAEs migration and the kinetic leaching process was well fitted with the pseudo-first-order model. Approximately 57.8-16,100 kg/year of PAEs were estimated to be released into oceans from microplastics.
引用
收藏
页数:8
相关论文
共 69 条
[1]  
Al-Malaika S., 2017, MATERIALS, P127
[2]  
[Anonymous], THEWORLDCOUNTS, P2021
[3]   Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions [J].
Auta, H. S. ;
Emenike, C. U. ;
Fauziah, S. H. .
ENVIRONMENT INTERNATIONAL, 2017, 102 :165-176
[4]   Microplastics in aquatic environments: A review on occurrence, distribution, toxic effects, and implications for human health [J].
Axel Elizalde-Velazquez, Gustavo ;
Manuel Gomez-Olivan, Leobardo .
SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 780
[5]   White and wonderful? Microplastics prevail in snow from the Alps to the Arctic [J].
Bergmann, Melanie ;
Muetzel, Sophia ;
Primpke, Sebastian ;
Tekman, Mine B. ;
Trachsel, Jurg ;
Gerdts, Gunnar .
SCIENCE ADVANCES, 2019, 5 (08)
[6]   Nanoplastic Affects Growth of S. obliquus and Reproduction of D. magna [J].
Besseling, Ellen ;
Wang, Bo ;
Lurling, Miquel ;
Koelmans, Albert A. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2014, 48 (20) :12336-12343
[7]   Diisobutyl phthalate has comparable anti-androgenic effects to di-n-butyl phthalate in fetal rat testis [J].
Borch, J ;
Axelstad, M ;
Vinggaard, AM ;
Dalgaard, M .
TOXICOLOGY LETTERS, 2006, 163 (03) :183-190
[8]   Influence of the crystallinity on the transport properties of isotactic polypropylene [J].
D'Aniello, C ;
Guadagno, L ;
Gorrasi, G ;
Vittoria, V .
POLYMER, 2000, 41 (07) :2515-2519
[9]   Turning microplastics into nanoplastics through digestive fragmentation by Antarctic krill [J].
Dawson, Amanda L. ;
Kawaguchi, So ;
King, Catherine K. ;
Townsend, Kathy A. ;
King, Robert ;
Huston, Wilhelmina M. ;
Nash, Susan M. Bengtson .
NATURE COMMUNICATIONS, 2018, 9
[10]   Plastic Pollution in the World's Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea [J].
Eriksen, Marcus ;
Lebreton, Laurent C. M. ;
Carson, Henry S. ;
Thiel, Martin ;
Moore, Charles J. ;
Borerro, Jose C. ;
Galgani, Francois ;
Ryan, Peter G. ;
Reisser, Julia .
PLOS ONE, 2014, 9 (12)