Cold-atom-based implementation of the quantum Rabi model

被引:33
作者
Schneeweiss, P. [1 ]
Dareau, A. [1 ]
Sayrin, C. [1 ,2 ]
机构
[1] TU Wien, Atominst, Vienna Ctr Quantum Sci & Technol, Stad Allee 2, A-1020 Vienna, Austria
[2] Sorbonne Univ, ENS Univ PSL, Coll France, Lab Kastler Brossel,CNRS, 11 Pl Marcelin Berthelot, F-75231 Paris 05, France
基金
欧洲研究理事会;
关键词
OPTICAL DIPOLE TRAPS;
D O I
10.1103/PhysRevA.98.021801
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The interaction of a two-level system (TLS) with a single bosonic mode (BM) is one of the most fundamental processes in quantum optics. Microscopically, it is described by the quantum Rabi model (QRM). Here we propose a versatile implementation of this model based on single trapped cold atoms. Assuming realistic experimental conditions, we show that our approach is not restricted to the Jaynes-Cummings regime but also allows exploring the regimes of ultrastrong coupling, deep strong coupling, and dispersive deep strong coupling. In contrast to most other QRM platforms, all important system parameters, i.e., the emitter-field detuning and the coupling strength of the emitter to the mode, can be dynamically tuned over a wide range. The quantum state of the BM and the TLS can be prepared and read-out using standard cold-atom techniques, enabling the study of the QRM and its dynamics with unprecedented control. Our scheme implements the TLS using atomic Zeeman states, while the atom's vibrational states in the trap represent the BM. The coupling is mediated by a suitable fictitious magnetic field pattern. Finally, we show that our scheme also enables the implementation of important generalizations, namely, the driven QRM, the QRM with quadratic coupling, or the Dicke model.
引用
收藏
页数:6
相关论文
共 70 条
[21]   Quantum Rabi model in the Brillouin zone with ultracold atoms [J].
Felicetti, Simone ;
Rico, Enrique ;
Sabin, Carlos ;
Ockenfels, Till ;
Koch, Johannes ;
Leder, Martin ;
Grossert, Christopher ;
Weitz, Martin ;
Solano, Enrique .
PHYSICAL REVIEW A, 2017, 95 (01)
[22]  
Forn-Díaz P, 2017, NAT PHYS, V13, P39, DOI [10.1038/nphys3905, 10.1038/NPHYS3905]
[23]   Observation of the Bloch-Siegert Shift in a Qubit-Oscillator System in the Ultrastrong Coupling Regime [J].
Forn-Diaz, P. ;
Lisenfeld, J. ;
Marcos, D. ;
Garcia-Ripoll, J. J. ;
Solano, E. ;
Harmans, C. J. P. M. ;
Mooij, J. E. .
PHYSICAL REVIEW LETTERS, 2010, 105 (23)
[24]   One Photon Can Simultaneously Excite Two or More Atoms [J].
Garziano, Luigi ;
Macri, Vincenzo ;
Stassi, Roberto ;
Di Stefano, Omar ;
Nori, Franco ;
Savasta, Salvatore .
PHYSICAL REVIEW LETTERS, 2016, 117 (04)
[25]   Multiple Rabi Splittings under Ultrastrong Vibrational Coupling [J].
George, Jino ;
Chervy, Thibault ;
Shalabney, Atef ;
Devaux, Eloise ;
Hiura, Hidefumi ;
Genet, Cyriaque ;
Ebbesen, Thomas W. .
PHYSICAL REVIEW LETTERS, 2016, 117 (15)
[26]   Optical dipole traps for neutral atoms [J].
Grimm, R ;
Weidemüller, M ;
Ovchinnikov, YB .
ADVANCES IN ATOMIC MOLECULAR, AND OPTICAL PHYSICS, VOL. 42, 2000, 42 :95-170
[27]   Cavity-QED simulation of qubit-oscillator dynamics in the ultrastrong-coupling regime [J].
Grimsmo, Arne L. ;
Parkins, Scott .
PHYSICAL REVIEW A, 2013, 87 (03)
[28]   Sub-cycle switch-on of ultrastrong light-matter interaction [J].
Guenter, G. ;
Anappara, A. A. ;
Hees, J. ;
Sell, A. ;
Biasiol, G. ;
Sorba, L. ;
De Liberato, S. ;
Ciuti, C. ;
Tredicucci, A. ;
Leitenstorfer, A. ;
Huber, R. .
NATURE, 2009, 458 (7235) :178-181
[29]   Resolved-sideband Raman cooling to the ground state of an optical lattice [J].
Hamann, SE ;
Haycock, DL ;
Klose, G ;
Pax, PH ;
Deutsch, IH ;
Jessen, PS .
PHYSICAL REVIEW LETTERS, 1998, 80 (19) :4149-4152
[30]   Nobel Lecture: Controlling photons in a box and exploring the quantum to classical boundary [J].
Haroche, Serge .
REVIEWS OF MODERN PHYSICS, 2013, 85 (03) :1083-1102