Blow-up and scattering for the 1D NLS with point nonlinearity above the mass-energy threshold

被引:0
作者
Ardila, Alex H. [1 ]
机构
[1] Univ Fed Minas Gerais, ICEx UFMG, BR-30123970 Belo Horizonte, MG, Brazil
关键词
NLS with point nonlinearity; Ground state; Scattering; Compactness; SCHRODINGER-EQUATION; STANDING WAVES; SOLITON; DEFECT;
D O I
10.1016/j.physd.2021.132978
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the nonlinear Schrodinger equation with focusing point nonlinearity in dimension one. First, we establish a scattering criterion for the equation based on Kenig-Merle's compactness-rigidity argument. Then we prove the energy scattering below and above the mass-energy threshold. We also describe the dynamics of solutions with data at the ground state threshold. Finally, we prove a blow-up criteria for the equation with initial data with arbitrarily large energy. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 24 条
[1]   A class of nonlinear Schrodinger equations with concentrated nonlinearity [J].
Adami, R ;
Teta, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 180 (01) :148-175
[2]   SCATTERING FOR THE L2 SUPERCRITICAL POINT NLS [J].
Adami, Riccardo ;
Fukuizumi, Reika ;
Holmer, Justin .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (01) :35-60
[3]  
[Anonymous], 2001, LECT NOTES PURE APPL
[4]   Quantum fields on star graphs [J].
Bellazzini, B. ;
Mintchev, M. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (35) :11101-11117
[5]  
Berkolaiko G., 2006, QUANTUM GRAPHS THEIR, V415
[6]  
Caudrelier V., 2005, J. Math. Phys., V4, P1
[7]  
Dinh V., 2020, ARXIV200905933
[8]   A new proof of scattering below the ground state for the non-radial focusing NLS [J].
Dodson, Benjamin ;
Murphy, Jason .
MATHEMATICAL RESEARCH LETTERS, 2018, 25 (06) :1805-1825
[9]   Going Beyond the Threshold: Scattering and Blow-up in the Focusing NLS Equation [J].
Duyckaerts, Thomas ;
Roudenko, Svetlana .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 334 (03) :1573-1615
[10]  
Duyckaerts T, 2008, MATH RES LETT, V15, P1233, DOI 10.4310/MRL.2008.v15.n6.a13