Similarity Solutions for Keller-Segel model with fractional diffusion of cells

被引:7
作者
Ray, Santanu Saha [1 ]
机构
[1] Natl Inst Technol, Dept Math, Rourkela 769008, India
关键词
blow-up; chemotactic aggregation; chemotaxis; fractional diffusion; Keller-Segel model; self-organization; PARTIAL-DIFFERENTIAL-EQUATIONS; DYNAMICS; WALKS;
D O I
10.1002/mma.6122
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the similarity method has been used to solve fractional Keller-Segel model where the diffusion is represented by a nonlocal fractional Laplace operator. In order to verify the results, fractional centred difference method and weighted shifted Gruwald-Letnikov difference method have been employed for reduction equations. The comparison of results establishes the accuracy and efficiency of the proposed two numerical schemes.
引用
收藏
页码:8379 / 8396
页数:18
相关论文
共 26 条
[1]   Analysis of the Keller-Segel Model with a Fractional Derivative without Singular Kernel [J].
Atangana, Abdon ;
Alkahtani, Badr Saad T. .
ENTROPY, 2015, 17 (06) :4439-4453
[3]   Solving a system of fractional partial differential equations arising in the model of HIV infection of CD4+ cells and attractor one-dimensional Keller-Segel equations [J].
Atangana, Abdon ;
Alabaraoye, Ernestine .
ADVANCES IN DIFFERENCE EQUATIONS, 2013,
[4]   Helical Levy walks:: Adjusting searching statistics to resource availability in microzooplankton [J].
Bartumeus, F ;
Peters, F ;
Pueyo, S ;
Marrasé, C ;
Catalan, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (22) :12771-12775
[5]  
Barwolff G., 2018, COMPUTATIONAL SCI IT
[6]   Blowup of solutions to generalized Keller-Segel model [J].
Biler, Piotr ;
Karch, Grzegorz .
JOURNAL OF EVOLUTION EQUATIONS, 2010, 10 (02) :247-262
[7]   The one-dimensional Keller-Segel model with fractional diffusion of cells [J].
Bournaveas, Nikolaos ;
Calvez, Vincent .
NONLINEARITY, 2010, 23 (04) :923-935
[8]  
Cantwell B. J., 2002, INTRO SYMMETRY ANAL
[9]   Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative [J].
Celik, Cem ;
Duman, Melda .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (04) :1743-1750
[10]   Exact solutions of the simplified Keller-Segel model [J].
Cherniha, Roman ;
Didovych, Maksym .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (11) :2960-2971