Convergence rates of posterior distributions for noniid observations

被引:197
作者
Ghosal, Subhashis
Van Der Vaart, Aad
机构
[1] N Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
[2] Vrije Univ Amsterdam, Div Math & Comp Sci, NL-1081 HV Amsterdam, Netherlands
关键词
covering numbers; Hellinger distance; independent nonidentically distributed observations; infinite dimensional model; Markov chains; posterior distribution; rate of convergence; tests;
D O I
10.1214/009053606000001172
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the asymptotic behavior of posterior distributions and Bayes estimators based on observations which are required to be neither independent nor identically distributed. We give general results on the rate of convergence of the posterior measure relative to distances derived from a testing criterion. We then specialize our results to independent, nonidentically distributed observations, Markov processes, stationary Gaussian time series and the white noise model. We apply our general results to several examples of infinite-dimensional statistical models including nonparametric regression with normal errors, binary regression, Poisson regression, an interval censoring model, Whittle estimation of the spectral density of a time series and a nonlinear autoregressive model.
引用
收藏
页码:192 / 223
页数:32
相关论文
共 34 条
[1]   Posterior consistency for semi-parametric regression problems [J].
Amewou-Atisso, M ;
Ghosal, S ;
Ghosh, JK ;
Ramamoorthi, RV .
BERNOULLI, 2003, 9 (02) :291-312
[2]  
Barron A, 1999, ANN STAT, V27, P536
[3]   APPROXIMATION IN METRIC-SPACES AND ESTIMATION THEORY [J].
BIRGE, L .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 65 (02) :181-237
[4]   Model selection via testing:: an alternative to (penalized) maximum likelihood estimators [J].
Birgé, L .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2006, 42 (03) :273-325
[5]  
Birge L., 1983, SPECIFYING STAT MODE, P134
[6]  
Brockwell P., 1991, TIME SERIES THEORY M
[7]   Bayesian estimation of the spectral density of a time series [J].
Choudhuri, N ;
Ghosal, S ;
Roy, A .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2004, 99 (468) :1050-1059
[8]   Contiguity of the Whittle measure for a Gaussian time series [J].
Choudhuri, N ;
Ghosal, S ;
Roy, A .
BIOMETRIKA, 2004, 91 (01) :211-218
[9]  
Chow Y., 1978, PROBABILITY THEORY I