A HYBRID DEEP CONVOLUTIONAL NEURAL NETWORK APPROACH FOR PREDICTING THE TRAFFIC CONGESTION INDEX

被引:0
作者
Duy Tran Quang [1 ]
Bae, Sang Hoon [2 ]
机构
[1] Nha Trang Univ, Fac Civil Engn, Nha Trang 57000, Vietnam
[2] Pukyong Natl Univ, Dept Spatial Informat Engn, Busan 48513, South Korea
来源
PROMET-TRAFFIC & TRANSPORTATION | 2021年 / 33卷 / 03期
关键词
traffic congestion prediction; deep learning; convolutional neural network; probe vehicles; gradient descent optimization; IMAGES;
D O I
暂无
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
Traffic congestion is one of the most important issues in large cities, and the overall travel speed is an important factor that reflects the traffic status on road networks. This study proposes a hybrid deep convolutional neural network (CNN) method that uses gradient descent optimization algorithms and pooling operations for predicting the short-term traffic congestion index in urban networks based on probe vehicles. First, the input data are collected by the probe vehicles to calculate the traffic congestion index (output label). Then, a CNN that uses gradient descent optimization algorithms and pooling operations is applied to enhance its performance. Finally, the proposed model is chosen on the basis of the R-squared (R-2) and root mean square error (RMSE) values. In the best-case scenario, the proposed model achieved an R-2 value of 98.7%. In addition, the experiments showed that the proposed model significantly outperforms other algorithms, namely the ordinary least squares (OLS), k-nearest neighbors (KNN), random forest (RF), recurrent neural network (RNN), artificial neural network (ANN), and convolutional long short-term memory (ConvLSTM), in predicting traffic congestion index. Furthermore, using the proposed method, the time-series changes in the traffic congestion status can be reliably visualized for the entire urban network.
引用
收藏
页码:373 / 385
页数:13
相关论文
共 50 条
  • [31] Insulator self-shattering detection: a deep convolutional neural network approach
    Yanli Yang
    Lijuan Wang
    Ying Wang
    Xiuzhuang Mei
    Multimedia Tools and Applications, 2019, 78 : 10097 - 10112
  • [32] Learning Traffic as Images: A Deep Convolutional Neural Network for Large-Scale Transportation Network Speed Prediction
    Ma, Xiaolei
    Dai, Zhuang
    He, Zhengbing
    Ma, Jihui
    Wang, Yong
    Wang, Yunpeng
    SENSORS, 2017, 17 (04)
  • [33] Deep Convolutional Neural Networks for Predicting Hydroxyproline in Proteins
    Long, HaiXia
    Wang, Mi
    Fu, HaiYan
    CURRENT BIOINFORMATICS, 2017, 12 (03) : 233 - 238
  • [34] Improved Convolutional Neural Network for Traffic Scene Segmentation
    Xu, Fuliang
    Luo, Yong
    Sun, Chuanlong
    Zhao, Hong
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2024, 138 (03): : 2691 - 2708
  • [35] Deep learning with convolutional neural network in radiology
    Koichiro Yasaka
    Hiroyuki Akai
    Akira Kunimatsu
    Shigeru Kiryu
    Osamu Abe
    Japanese Journal of Radiology, 2018, 36 : 257 - 272
  • [36] Military Surveillance with Deep Convolutional Neural Network
    Gupta, Anishi
    Gupta, Uma
    2018 3RD INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, COMMUNICATION, COMPUTER, AND OPTIMIZATION TECHNIQUES (ICEECCOT - 2018), 2018, : 1147 - 1152
  • [37] Techniques for Compressing Deep Convolutional Neural Network
    Chaman, Shilpa
    2020 INTERNATIONAL CONFERENCE ON COMPUTATIONAL PERFORMANCE EVALUATION (COMPE-2020), 2020, : 48 - 53
  • [38] Utilisation of convolutional neural network on deep learning in predicting digital image to tree damage type
    Safe’i R.
    Andrian R.
    Maryono T.
    Nopriyanto Z.
    International Journal of Internet Manufacturing and Services, 2024, 10 (01) : 77 - 90
  • [39] Predicting the Flow Fields in Meandering Rivers with a Deep Super-Resolution Convolutional Neural Network
    Yan, Xiaohui
    Du, Fu
    Zhang, Tianqi
    Cui, Qian
    Zhu, Zuhao
    Song, Ziming
    WATER, 2024, 16 (03)
  • [40] Total Recall: Understanding Traffic Signs using Deep Convolutional Neural Network
    Saha, Sourajit
    Kamran, Sharif Amit
    Sabbir, Ali Shihab
    2018 21ST INTERNATIONAL CONFERENCE OF COMPUTER AND INFORMATION TECHNOLOGY (ICCIT), 2018,