A HYBRID DEEP CONVOLUTIONAL NEURAL NETWORK APPROACH FOR PREDICTING THE TRAFFIC CONGESTION INDEX

被引:0
|
作者
Duy Tran Quang [1 ]
Bae, Sang Hoon [2 ]
机构
[1] Nha Trang Univ, Fac Civil Engn, Nha Trang 57000, Vietnam
[2] Pukyong Natl Univ, Dept Spatial Informat Engn, Busan 48513, South Korea
来源
PROMET-TRAFFIC & TRANSPORTATION | 2021年 / 33卷 / 03期
关键词
traffic congestion prediction; deep learning; convolutional neural network; probe vehicles; gradient descent optimization; IMAGES;
D O I
暂无
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
Traffic congestion is one of the most important issues in large cities, and the overall travel speed is an important factor that reflects the traffic status on road networks. This study proposes a hybrid deep convolutional neural network (CNN) method that uses gradient descent optimization algorithms and pooling operations for predicting the short-term traffic congestion index in urban networks based on probe vehicles. First, the input data are collected by the probe vehicles to calculate the traffic congestion index (output label). Then, a CNN that uses gradient descent optimization algorithms and pooling operations is applied to enhance its performance. Finally, the proposed model is chosen on the basis of the R-squared (R-2) and root mean square error (RMSE) values. In the best-case scenario, the proposed model achieved an R-2 value of 98.7%. In addition, the experiments showed that the proposed model significantly outperforms other algorithms, namely the ordinary least squares (OLS), k-nearest neighbors (KNN), random forest (RF), recurrent neural network (RNN), artificial neural network (ANN), and convolutional long short-term memory (ConvLSTM), in predicting traffic congestion index. Furthermore, using the proposed method, the time-series changes in the traffic congestion status can be reliably visualized for the entire urban network.
引用
收藏
页码:373 / 385
页数:13
相关论文
共 50 条
  • [21] A hybrid deep learning model by combining convolutional neural network and recurrent neural network to detect forest fire
    Rajib Ghosh
    Anupam Kumar
    Multimedia Tools and Applications, 2022, 81 : 38643 - 38660
  • [22] A Traffic Sign Detection Algorithm Based on Deep Convolutional Neural Network
    Xiong Changzhen
    Wang Cong
    Ma Weixin
    Shan Yanmei
    2016 IEEE INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING (ICSIP), 2016, : 676 - 679
  • [23] A deep convolutional neural network for predicting electricity consumption at Grey Nuns building in Canada
    Elshaboury, Nehal
    Abdelkader, Eslam Mohammed
    Al-Sakkaf, Abobakr
    Bagchi, Ashutosh
    CONSTRUCTION INNOVATION-ENGLAND, 2025, 25 (02): : 270 - 289
  • [24] Developing a Hybrid Network Architecture for Deep Convolutional Neural Networks
    Sayan, H. Huseyin
    Tekgozoglu, O. Faruk
    Sonmez, Yusuf
    Turan, Bilal
    ARTIFICIAL INTELLIGENCE AND APPLIED MATHEMATICS IN ENGINEERING PROBLEMS, 2020, 43 : 750 - 757
  • [25] Predicting lung nodule malignancies by combining deep convolutional neural network and handcrafted features
    Li, Shulong
    Xu, Panpan
    Li, Bin
    Chen, Liyuan
    Zhou, Zhiguo
    Hao, Hongxia
    Duan, Yingying
    Folker, Michael
    Ma, Jianhua
    Huang, Shiying
    Jiang, Steve
    Wang, Jing
    PHYSICS IN MEDICINE AND BIOLOGY, 2019, 64 (17)
  • [26] Predicting Traffic Path Recommendation Using Spatiotemporal Graph Convolutional Neural Network
    Khairnar, Hitendra Shankarrao
    Sonkamble, Balwant
    PROCEEDINGS OF SIXTH INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY (ICICT 2021), VOL 2, 2022, 236 : 413 - 421
  • [27] Long short term memory-convolutional neural network based deep hybrid approach for solar irradiance forecasting
    Kumari, Pratima
    Toshniwal, Durga
    APPLIED ENERGY, 2021, 295
  • [28] Predicting Body Mass Index From Structural MRI Brain Images Using a Deep Convolutional Neural Network
    Vakli, Pal
    Deak-Meszlenyi, Regina J.
    Auer, Tibor
    Vidnyanszky, Zoltan
    FRONTIERS IN NEUROINFORMATICS, 2020, 14
  • [29] PCNN: Deep Convolutional Networks for Short-Term Traffic Congestion Prediction
    Chen, Meng
    Yu, Xiaohui
    Liu, Yang
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2018, 19 (11) : 3550 - 3559
  • [30] Deep Convolutional Neural Networks for Predicting Hydroxyproline in Proteins
    Long, HaiXia
    Wang, Mi
    Fu, HaiYan
    CURRENT BIOINFORMATICS, 2017, 12 (03) : 233 - 238