Estimating Parameters of the Induction Machine by the Polynomial Regression

被引:14
作者
Wu, Rong-Ching [1 ]
Tseng, Yuan-Wei [1 ]
Chen, Cheng-Yi [2 ]
机构
[1] I Shou Univ, Dept Elect Engn, Kaohsiung 84001, Taiwan
[2] Cheng Shou Univ, Dept Elect Engn, Kaohsiung 83347, Taiwan
来源
APPLIED SCIENCES-BASEL | 2018年 / 8卷 / 07期
关键词
induction machine; parameter estimation; polynomial regression; IDENTIFICATION; MOTOR; ALGORITHM;
D O I
10.3390/app8071073
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Parameter identification of an induction machine is of great importance in numerous industrial applications. This paper used time-varied signals of voltage, current, and rotor speed to compute the equivalent circuit parameters, moment of inertia, and friction coefficient of an induction machine. The theoretical impedance-slip rate characteristic curve of the induction machine can be expressed as a polynomial fraction, so that a proper polynomial fraction can obtain complete and accurate parameters. A time-varied impedance can be found by the time-varied voltage and current. From the variation of impedance to the rotor speed, the parameters of the equivalent circuit can be found. According to the equivalent circuit and rotor speed, the torque can be determined via dynamic simulation. On the basis of torque and rotor speed with time, the moment of inertia and friction coefficient of the motor can then be obtained. Advantages of this method include the ability to obtain the optimal value via only one calculation, without the requirement of any initial value, and the avoidance of any local optimal solution. In this paper, the analysis of a practical induction machine was used as an example to illustrate the practical application.
引用
收藏
页数:13
相关论文
共 25 条
  • [1] Application of genetic algorithm with a novel adaptive scheme for the identification of induction machine parameters
    Abdelhadi, B
    Benoudjit, A
    Nait-Said, N
    [J]. IEEE TRANSACTIONS ON ENERGY CONVERSION, 2005, 20 (02) : 284 - 291
  • [2] A Novel In Situ Efficiency Estimation Algorithm for Three-Phase IM Using GA, IEEE Method F1 Calculations, and Pretested Motor Data
    Al-Badri, Maher
    Pillay, Pragasen
    Angers, Pierre
    [J]. IEEE TRANSACTIONS ON ENERGY CONVERSION, 2015, 30 (03) : 1092 - 1102
  • [3] Modeling of saturated induction machines with injected high-frequency signals
    Bottiglieri, Giovanni
    Consoli, Alfio
    Lipo, Thomas A.
    [J]. IEEE TRANSACTIONS ON ENERGY CONVERSION, 2007, 22 (04) : 819 - 828
  • [4] Chapman J., 2011, Electric Machinery Fundamentals, V5th
  • [5] Induction Motor Parameter Estimation Using Sparse Grid Optimization Algorithm
    Duan, Fang
    Zivanovic, Rastko
    Al-Sarawi, Said
    Mba, David
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2016, 12 (04) : 1453 - 1461
  • [6] An improved methodology for dynamic modelling and simulation of electromechanically coupled drive systems: An experimental validation
    Erdogan, Nuh
    Henao, Humberto
    Grisel, Richard
    [J]. SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2015, 40 (07): : 2021 - 2043
  • [7] On-line parameter estimator of an induction motor at standstill
    Fang, CH
    Lin, SK
    Wang, SJ
    [J]. CONTROL ENGINEERING PRACTICE, 2005, 13 (05) : 535 - 540
  • [8] Temperature Influence Analysis on Parameter Estimation of Induction Motors Using Differential Evolution
    Guedes, J. J.
    Castoldi, M. F.
    Goedtel, A.
    [J]. IEEE LATIN AMERICA TRANSACTIONS, 2016, 14 (09) : 4097 - 4105
  • [9] Simple mechanical parameters identification of induction machine using voltage sensor only
    Horen, Yoram
    Strajnikov, Pavel
    Kuperman, Alon
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2015, 92 : 60 - 66
  • [10] A comparison of spectrum estimation techniques for sensorless speed detection in induction machines
    Hurst, KD
    Habetler, TG
    [J]. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 1997, 33 (04) : 898 - 905