Learning deep cross-scale feature propagation for indoor semantic segmentation

被引:6
|
作者
Huan, Linxi [1 ]
Zheng, Xianwei [1 ]
Tang, Shengjun [2 ]
Gong, Jianya [1 ,3 ]
机构
[1] Wuhan Univ, State Key Lab LIESMARS, Wuhan, Peoples R China
[2] Shenzhen Univ, Sch Architecture & Urban Planning, Shenzhen, Peoples R China
[3] Wuhan Univ, Sch Remote Sensing & Engn, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
Indoor scene parsing; Semantic segmentation; Deep learning; Cross-scale feature propagation; IMAGE; CLASSIFICATION;
D O I
10.1016/j.isprsjprs.2021.03.023
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Indoor semantic segmentation is a long-standing vision task that has been recently advanced by convolutional neural networks (CNNs), but this task remains challenging by high occlusion and large scale variation of indoor scenes. Existing CNN-based methods mainly focus on using auxiliary depth data to enrich features extracted from RGB images, hence, they pay less attention to exploiting multi-scale information in exracted features, which is essential for distinguishing objects in highly cluttered indoor scenes. This paper proposes a deep cross-scale feature propagation network (CSNet), to effectively learn and fuse multi-scale features for robust semantic segmentation of indoor scene images. The proposed CSNet is deployed as an encoder-decoder engine. During encoding, the CSNet propagates contextual information across scales and learn discriminative multi-scale features, which are robust to large object scale variation and indoor occlusion. The decoder of CSNet then adaptively integrates the multi-scale encoded features with fusion supervision at all scales to generate target semantic segmentation prediction. Extensive experiments conducted on two challenging benchmarks demonstrate that the CSNet can effectively learn multi-scale representations for robust indoor semantic segmentation, achieving outstanding performance with mIoU scores of 51.5 and 50.8 on NYUDv2 and SUN-RGBD datasets, respectively.
引用
收藏
页码:42 / 53
页数:12
相关论文
共 50 条
  • [1] Cross-Scale Feature Propagation Network for Semantic Segmentation of High-Resolution Remote Sensing Images
    Zeng, Qiaolin
    Zhou, Jingxiang
    Niu, Xuerui
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [2] CFFNet: Cross-scale Feature Fusion Network for Real-Time Semantic Segmentation
    Luo, Qifeng
    Xu, Ting-Bing
    Wei, Zhenzhong
    PATTERN RECOGNITION, ACPR 2021, PT I, 2022, 13188 : 338 - 351
  • [3] Cross-Scale Feature Interaction Network for Semantic Segmentation in Side-Scan Sonar Images
    Wang, Zhen
    You, Zhuhong
    Xu, Nan
    Wang, Buhong
    Huang, De-Shuang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 5928 - 5948
  • [4] Deep learning network for indoor point cloud semantic segmentation with transferability
    Li, Luping
    Chen, Jian
    Su, Xing
    Han, Haoying
    Fan, Chao
    AUTOMATION IN CONSTRUCTION, 2024, 168
  • [5] SMCA-CNN: Learning a Semantic Mask and Cross-Scale Adaptive Feature for Robust Crowd Counting
    Wang, Guoshuai
    Zou, Yuexian
    Li, Zirui
    Yang, Dongming
    IEEE ACCESS, 2019, 7 : 168495 - 168506
  • [6] 3D semantic segmentation using deep learning for large-scale indoor point cloud
    Chen Hui
    Xu Peng
    Zuo Yipeng
    Wang Weina
    PROCEEDINGS OF 2019 14TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS (ICEMI), 2019, : 1650 - 1655
  • [7] UAVSeg: Dual-Encoder Cross-Scale Attention Network for UAV Images' Semantic Segmentation
    Wang, Zhen
    You, Zhu-Hong
    Xu, Nan
    Zhang, Chuanlei
    Huang, De-Shuang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [8] Cross-scale Graph Interaction Network for Semantic Segmentation of Remote Sensing Images
    Nie, Jie
    Huang, Lei
    Zheng, Chengyu
    Lv, Xiaowei
    Wang, Rui
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2023, 19 (06)
  • [9] A Review of Deep Learning-Based Semantic Segmentation for Point Cloud
    Zhang, Jiaying
    Zhao, Xiaoli
    Chen, Zheng
    Lu, Zhejun
    IEEE ACCESS, 2019, 7 : 179118 - 179133
  • [10] SleepFC: Feature Pyramid and Cross-Scale Context Learning for Sleep Staging
    Li, Wei
    Liu, Teng
    Xu, Baoguo
    Song, Aiguo
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2024, 32 : 2198 - 2208