Channel Estimation for RIS-Aided mmWave MIMO Systems

被引:26
作者
He, Jiguang [1 ]
Leinonen, Markus [1 ]
Wymeersch, Henk [2 ]
Juntti, Markku [1 ]
机构
[1] Univ Oulu, Ctr Wireless Commun, FI-90014 Oulu, Finland
[2] Chalmers Univ Technol, Dept Elect Engn, Gothenburg, Sweden
来源
2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM) | 2020年
关键词
Channel estimation; compressive sensing; millimeter wave MIMO; reconligurable intelligent surface; MASSIVE MIMO; WAVE;
D O I
10.1109/GLOBECOM42002.2020.9348112
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A reconfigurable intelligent surface (RIS) can shape the radio propagation by passively changing the directions of impinging electromagnetic waves. The optimal control of the R1S requires perfect channel state information (CSI) of all the links connecting the base station (BS) and the mobile station (MS) via the RIS. Thereby the channel (parameter) estimation at the BS/MS and the related message feedback mechanism are needed. In this paper, we adopt a two-stage channel estimation scheme for the RIS-aided millimeter wave (mmWave) MIMO channels using an iterative reweighted method to sequentially estimate the channel parameters. We evaluate the average spectrum efficiency (SE) and the RIS beamforming gain of the proposed scheme and demonstrate that it achieves high-resolution estimation with the average SE comparable to that with perfect CSI.
引用
收藏
页数:6
相关论文
共 18 条
[1]   Millimeter Wave Channel Modeling and Cellular Capacity Evaluation [J].
Akdeniz, Mustafa Riza ;
Liu, Yuanpeng ;
Samimi, Mathew K. ;
Sun, Shu ;
Rangan, Sundeep ;
Rappaport, Theodore S. ;
Erkip, Elza .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2014, 32 (06) :1164-1179
[2]   Channel Estimation and Hybrid Precoding for Millimeter Wave Cellular Systems [J].
Alkhateeb, Ahmed ;
El Ayach, Omar ;
Leus, Geert ;
Heath, Robert W., Jr. .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2014, 8 (05) :831-846
[3]  
Chen J., 2019, Channel estimation for reconfigurable intelligent surface aided multi-user mimo systems
[4]   Super-Resolution Compressed Sensing for Line Spectral Estimation: An Iterative Reweighted Approach [J].
Fang, Jun ;
Wang, Feiyu ;
Shen, Yanning ;
Li, Hongbin ;
Blum, Rick S. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (18) :4649-4662
[5]  
He JG, 2014, IEEE GLOBE WORK, P416, DOI 10.1109/GLOCOMW.2014.7063467
[6]   Cascaded Channel Estimation for Large Intelligent Metasurface Assisted Massive MIMO [J].
He, Zhen-Qing ;
Yuan, Xiaojun .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (02) :210-214
[7]   An Overview of Signal Processing Techniques for Millimeter Wave MIMO Systems [J].
Heath, Robert W., Jr. ;
Gonzalez-Prelcic, Nuria ;
Rangan, Sundeep ;
Roh, Wonil ;
Sayeed, Akbar M. .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2016, 10 (03) :436-453
[8]   Super-Resolution Channel Estimation for MmWave Massive MIMO With Hybrid Precoding [J].
Hu, Chen ;
Dai, Linglong ;
Mir, Talha ;
Gao, Zhen ;
Fang, Jun .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2018, 67 (09) :8954-8958
[9]   Beyond Massive MIMO: The Potential of Positioning With Large Intelligent Surfaces [J].
Hu, Sha ;
Rusek, Fredrik ;
Edfors, Ove .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (07) :1761-1774
[10]  
Huang C., 2018, ARXIV181006934