DNA Hybridization in Thermoresponsive Polymer Nanoparticles

被引:10
作者
Moura, Leila M.
Martinho, Jose M. G.
Farinha, Jose Paulo S. [1 ]
机构
[1] Inst Super Tecn, Ctr Quimicafis Mol, P-1049001 Lisbon, Portugal
关键词
DNA; energy transfer; FRET; nanoparticles; polymers; PHOTOINDUCED ELECTRON-TRANSFER; CORE-SHELL LATEXES; FACTOR-V-LEIDEN; PHASE-TRANSITION; FLUORESCENT DYES; ENERGY-TRANSFER; OLIGONUCLEOTIDES; METHACRYLATE); KINETICS; POLY(N-ISOPROPYLACRYLAMIDE);
D O I
10.1002/cphc.201000015
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We achieve very high hybridization efficiencies by using a new method to immobilize DNA strands on the surface of thermoresponsive polymer nanoparticles. Hybridization efficiencies of about 70% are obtained between the DNA immobilized in the particles and a complementary strand in solution, even at very low ionic strengths (1 mm). The polymer nanoparticles have a glassy poly(methylmethacrylate) (PMMA) core and a thermoresponsive shell of poly(N-isopropylacrylamide) (PNIPAM) containing positive charges. After a DNA strand labeled with a fluorescence probe is loaded onto the particles at room temperature, the temperature is increased above the volume phase transition temperature of the PNIPAM shell, TVPT approximate to 28 degrees C. The collapse of the particle shell immobilizes the DNA while maintaining its availability for hybridization with a complementary strand. Forster resonance energy transfer (FRET) is used to detect the hybridization with a complementary DNA strand labeled with a FRET acceptor probe.
引用
收藏
页码:1749 / 1756
页数:8
相关论文
共 50 条
  • [31] Diffusion of Gold Nanorods Functionalized with Thermoresponsive Polymer Brushes
    Schweizerhof, Sjoeren
    Demco, Dan Eugen
    Mourran, Ahmed
    Fechete, Radu
    Moeller, Martin
    LANGMUIR, 2018, 34 (27) : 8031 - 8041
  • [32] Patterned immobilization of thermoresponsive polymer
    Ito, Y
    Chen, GP
    Guan, YQ
    Imanishi, Y
    LANGMUIR, 1997, 13 (10) : 2756 - 2759
  • [33] Modelling thermoresponsive polymer brush by mesoscale computer simulations
    Yaremchuk, D.
    Kalyuzhnyi, O.
    Ilnytskyi, J.
    CONDENSED MATTER PHYSICS, 2023, 26 (03)
  • [34] Tuning response amplitude in nanoimprinted thermoresponsive polymer blend
    Ranganath, Anupama Sargur
    Vellingiri, Suganya
    Low, Hong Yee
    JOURNAL OF APPLIED POLYMER SCIENCE, 2022, 139 (15)
  • [35] The assembly, hybridization and detection of DNA on gold nanoparticles with silver enhancement
    Wang, MJ
    Ji, XH
    Wang, LY
    Liu, M
    Liu, YM
    Bai, YB
    Li, TJ
    Li, JH
    ACTA PHYSICO-CHIMICA SINICA, 2003, 19 (09) : 879 - 882
  • [36] Immobilization of oligonucleotides onto silica nanoparticles for DNA hybridization studies
    Hilliard, LR
    Zhao, XJ
    Tan, WH
    ANALYTICA CHIMICA ACTA, 2002, 470 (01) : 51 - 56
  • [37] A combined conjugation and hybridization technology for different types of DNA and nanoparticles
    Chang, Ho
    Tzeng, Wei-Chen
    MATERIALS TRANSACTIONS, 2008, 49 (06) : 1467 - 1473
  • [38] Lipid-modified conjugated polymer nanoparticles for cell imaging and transfection
    Feng, Xuli
    Tang, Yanli
    Duan, Xinrui
    Liu, Libing
    Wang, Shu
    JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (07) : 1312 - 1316
  • [39] Structural characterization of nanoparticles from thermoresponsive poly(N-isopropylacrylamide)-DNA conjugate
    Ooi, Wei-Yang
    Fujita, Masahiro
    Pan, Pengju
    Tang, Hui-Ying
    Sudesh, Kumar
    Ito, Kazuki
    Kanayama, Naoki
    Takarada, Tohru
    Maeda, Mizuo
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2012, 374 : 315 - 320
  • [40] Construction of DNA-Au nanoparticles multilayer and its application to detection of DNA hybridization
    Liu, HC
    Yamaguchi, A
    Hayashida, M
    Matsuo, S
    Misawa, H
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2004, 43 (5A): : 2767 - 2770