DNA Hybridization in Thermoresponsive Polymer Nanoparticles

被引:10
作者
Moura, Leila M.
Martinho, Jose M. G.
Farinha, Jose Paulo S. [1 ]
机构
[1] Inst Super Tecn, Ctr Quimicafis Mol, P-1049001 Lisbon, Portugal
关键词
DNA; energy transfer; FRET; nanoparticles; polymers; PHOTOINDUCED ELECTRON-TRANSFER; CORE-SHELL LATEXES; FACTOR-V-LEIDEN; PHASE-TRANSITION; FLUORESCENT DYES; ENERGY-TRANSFER; OLIGONUCLEOTIDES; METHACRYLATE); KINETICS; POLY(N-ISOPROPYLACRYLAMIDE);
D O I
10.1002/cphc.201000015
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We achieve very high hybridization efficiencies by using a new method to immobilize DNA strands on the surface of thermoresponsive polymer nanoparticles. Hybridization efficiencies of about 70% are obtained between the DNA immobilized in the particles and a complementary strand in solution, even at very low ionic strengths (1 mm). The polymer nanoparticles have a glassy poly(methylmethacrylate) (PMMA) core and a thermoresponsive shell of poly(N-isopropylacrylamide) (PNIPAM) containing positive charges. After a DNA strand labeled with a fluorescence probe is loaded onto the particles at room temperature, the temperature is increased above the volume phase transition temperature of the PNIPAM shell, TVPT approximate to 28 degrees C. The collapse of the particle shell immobilizes the DNA while maintaining its availability for hybridization with a complementary strand. Forster resonance energy transfer (FRET) is used to detect the hybridization with a complementary DNA strand labeled with a FRET acceptor probe.
引用
收藏
页码:1749 / 1756
页数:8
相关论文
共 50 条
  • [21] Tuning Ratios, Densities, and Supramolecular Spacing in Bifunctional DNA-Modified Gold Nanoparticles
    Diaz, Julian A.
    Grewer, David M.
    Gibbs-Davis, Julianne M.
    SMALL, 2012, 8 (06) : 873 - 883
  • [22] Assembly and Functionalization of DNA-Polymer Microcapsules
    Cavalieri, Francesca
    Postma, Almar
    Lee, Lillian
    Caruso, Frank
    ACS NANO, 2009, 3 (01) : 234 - 240
  • [23] Effect of temperature on foamability using a thermoresponsive polymer
    Jackman, Matthew
    Bussonniere, Adrien
    Leung, Hin Long
    Xu, Zhenghe
    Tsai, Peichun Amy
    Liu, Qingxia
    AIP ADVANCES, 2018, 8 (07):
  • [24] Investigation of Thermoresponsive Microgel Polymer Swelling Theory
    Agbim, Kenechi A.
    Schaefer, Laura A.
    POLYMER REVIEWS, 2020, 60 (04) : 648 - 670
  • [25] Pressure Response of a Thermoresponsive Polymer in an Ionic Liquid
    Hirosawa, Kazu
    Fujii, Kenta
    Ueki, Takeshi
    Kitazawa, Yuzo
    Watanabe, Masayoshi
    Shibayama, Mitsuhiro
    MACROMOLECULES, 2016, 49 (21) : 8249 - 8253
  • [26] Catalytic Gold Nanoparticles for Nanoplasmonic Detection of DNA Hybridization
    Zheng, Xiaoxue
    Liu, Qing
    Jing, Chao
    Li, Yang
    Li, Di
    Luo, Weijie
    Wen, Yanqin
    He, Yao
    Huang, Qing
    Long, Yi-Tao
    Fan, Chunhai
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (50) : 11994 - 11998
  • [27] Immobilization of DNA on Fe nanoparticles and their hybridization to functionalized surface
    Wei Wang
    Shihai He
    Ying Jing
    Lina Yu
    Jian-Ping Wang
    Jian-Ping Zhai
    Journal of Nanoparticle Research, 2013, 15
  • [28] Immobilization of DNA on Fe nanoparticles and their hybridization to functionalized surface
    Wang, Wei
    He, Shihai
    Jing, Ying
    Yu, Lina
    Wang, Jian-Ping
    Zhai, Jian-Ping
    JOURNAL OF NANOPARTICLE RESEARCH, 2013, 15 (06)
  • [29] Quantitative DNA hybridization in solution using magnetic/luminescent core-shell nanoparticles
    Son, Ahjeong
    Dosev, Dosi
    Nichkova, Mikaela
    Ma, Zhiya
    Kennedy, Ian M.
    Scow, Kate M.
    Hristova, Krassimira R.
    ANALYTICAL BIOCHEMISTRY, 2007, 370 (02) : 186 - 194
  • [30] One-step grafting reaction of thermoresponsive polymer brushes over silica nanoparticles
    Pena, Jhair Andres
    Du, Xin Jing
    Xing, Jin Feng
    COLLOID AND POLYMER SCIENCE, 2022, 300 (09) : 1087 - 1099