DNA Hybridization in Thermoresponsive Polymer Nanoparticles

被引:10
作者
Moura, Leila M.
Martinho, Jose M. G.
Farinha, Jose Paulo S. [1 ]
机构
[1] Inst Super Tecn, Ctr Quimicafis Mol, P-1049001 Lisbon, Portugal
关键词
DNA; energy transfer; FRET; nanoparticles; polymers; PHOTOINDUCED ELECTRON-TRANSFER; CORE-SHELL LATEXES; FACTOR-V-LEIDEN; PHASE-TRANSITION; FLUORESCENT DYES; ENERGY-TRANSFER; OLIGONUCLEOTIDES; METHACRYLATE); KINETICS; POLY(N-ISOPROPYLACRYLAMIDE);
D O I
10.1002/cphc.201000015
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We achieve very high hybridization efficiencies by using a new method to immobilize DNA strands on the surface of thermoresponsive polymer nanoparticles. Hybridization efficiencies of about 70% are obtained between the DNA immobilized in the particles and a complementary strand in solution, even at very low ionic strengths (1 mm). The polymer nanoparticles have a glassy poly(methylmethacrylate) (PMMA) core and a thermoresponsive shell of poly(N-isopropylacrylamide) (PNIPAM) containing positive charges. After a DNA strand labeled with a fluorescence probe is loaded onto the particles at room temperature, the temperature is increased above the volume phase transition temperature of the PNIPAM shell, TVPT approximate to 28 degrees C. The collapse of the particle shell immobilizes the DNA while maintaining its availability for hybridization with a complementary strand. Forster resonance energy transfer (FRET) is used to detect the hybridization with a complementary DNA strand labeled with a FRET acceptor probe.
引用
收藏
页码:1749 / 1756
页数:8
相关论文
共 50 条
  • [1] Thermoresponsive Polymer Nanoparticles Based on Viologen Cavitands
    Sultanova, Elza D.
    Krasnova, Ekaterina G.
    Kharlamov, Sergey V.
    Nasybullina, Gulnaz R.
    Yanilkin, Vitaly V.
    Nizameev, Irek R.
    Kadirov, Marsil K.
    Mukhitova, Rezeda K.
    Zakharova, Lucia Y.
    Ziganshina, Albina Y.
    Konovalov, Alexander I.
    CHEMPLUSCHEM, 2015, 80 (01): : 217 - 222
  • [2] Synthesis of single chain thermoresponsive polymer nanoparticles
    Ormategui, Nerea
    Garcia, Ignacio
    Padro, Daniel
    Cabanero, German
    Grande, Hans J.
    Loinaz, Iraida
    SOFT MATTER, 2012, 8 (03) : 734 - 740
  • [3] Fluorescence of oligonucleotides adsorbed onto the thermoresponsive poly(isopropyl acrylamide) shell of polymer nanoparticles: Application to bioassays
    Martinho, Jose M. G.
    Prazeres, Telmo J. V.
    Moura, Leila
    Farinha, Jose P. S.
    PURE AND APPLIED CHEMISTRY, 2009, 81 (09) : 1615 - 1634
  • [4] DNA molecular recognition of intercalators affects aggregation of a thermoresponsive polymer
    Sugawara, Yuuki
    Tamaki, Takanori
    Yamaguchi, Takeo
    POLYMER CHEMISTRY, 2014, 5 (16) : 4612 - 4616
  • [6] Self-assembly of thermoresponsive nanocomposites and their applications for sensing daunorubicin with DNA
    Gong, Zailin
    Tang, Dongyan
    Zhang, Xiangdong
    Ma, Jun
    Mao, Yang
    APPLIED SURFACE SCIENCE, 2014, 316 : 194 - 201
  • [7] A Proposed Mechanism of the Influence of Gold Nanoparticles on DNA Hybridization
    Sedighi, Abootaleb
    Li, Paul C. H.
    Pekcevik, Idah C.
    Gates, Byron D.
    ACS NANO, 2014, 8 (07) : 6765 - 6777
  • [8] DNA Polymer Nanoparticles Programmed via Supersandwich Hybridization for Imaging and Therapy of Cancer Cells
    Li, Na
    Xiang, Mei-Hao
    Liu, Jin-Wen
    Tang, Hao
    Jiang, Jian-Hui
    ANALYTICAL CHEMISTRY, 2018, 90 (21) : 12951 - 12958
  • [9] Thermoresponsive Dynamic Covalent Single-Chain Polymer Nanoparticles Reversibly Transform into a Hydrogel
    Whitaker, Daniel E.
    Mahon, Clare S.
    Fulton, David A.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (03) : 956 - 959
  • [10] Thermoresponsive Nanoparticles with Cyclic-Polymer-Grafted Shells Are More Stable than with Linear-Polymer-Grafted Shells: Effect of Polymer Topology, Molecular Weight, and Core Size
    Willinger, Max
    Reimhult, Erik
    JOURNAL OF PHYSICAL CHEMISTRY B, 2021, 125 (25) : 7009 - 7023