Multidimensional reaction rate theory with anisotropic diffusion

被引:19
作者
Berezhkovskii, Alexander M. [1 ]
Szabo, Attila [2 ]
Greives, Nicholas [3 ,4 ]
Zhou, Huan-Xiang [3 ,4 ]
机构
[1] NIH, Math & Stat Comp Lab, Div Computat Biosci, Ctr Informat Technol, Bethesda, MD 20819 USA
[2] NIDDK, Lab Chem Phys, NIH, Bethesda, MD 20819 USA
[3] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA
[4] Florida State Univ, Inst Mol Biophys, Tallahassee, FL 32306 USA
基金
美国国家卫生研究院;
关键词
ACTIVATED RATE-PROCESSES; CHEMICAL-REACTIONS; METASTABLE STATE; KRAMERS PROBLEM; POLAR-SOLVENTS; DECAY; SOLVATION; FRICTION; COMPLEX; MOTION;
D O I
10.1063/1.4902243
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An analytical expression is derived for the rate constant that describes diffusive transitions between two deep wells of a multidimensional potential. The expression, in contrast to the Kramers-Langer formula for the rate constant, is valid even when the diffusion is highly anisotropic. Our approach is based on a variational principle for the reactive flux and uses a trial function for the splitting probability or commitor. The theoretical result is validated by Brownian dynamics simulations. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:6
相关论文
共 21 条
[1]  
[Anonymous], 2005, CHEM PHYS LETT
[2]  
[Anonymous], J STAT PHYS
[3]   One-dimensional reaction coordinates for diffusive activated rate processes in many dimensions [J].
Berezhkovskii, A ;
Szabo, A .
JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (01)
[4]   Diffusion along the Splitting/Commitment Probability Reaction Coordinate [J].
Berezhkovskii, Alexander M. ;
Szabo, Attila .
JOURNAL OF PHYSICAL CHEMISTRY B, 2013, 117 (42) :13115-13119
[5]   MUTUAL INFLUENCE OF TRAPS ON THE DEATH OF A BROWNIAN PARTICLE [J].
BEREZHKOVSKII, AM ;
MAKHNOVSKII, YA .
CHEMICAL PHYSICS LETTERS, 1990, 175 (05) :499-504
[6]   ACTIVATED RATE-PROCESSES IN THE MULTIDIMENSIONAL CASE - CONSIDERATION OF RECROSSINGS IN THE MULTIDIMENSIONAL KRAMERS PROBLEM WITH ANISOTROPIC FRICTION [J].
BEREZHKOVSKII, AM ;
ZITSERMAN, VY .
CHEMICAL PHYSICS, 1991, 157 (1-2) :141-155
[7]   NONEQUILIBRIUM SOLVATION IN CHEMICAL-REACTIONS .1. EFFECTIVE EQUATIONS OF MOTION [J].
BEREZHKOVSKII, AM .
CHEMICAL PHYSICS, 1992, 164 (03) :331-339
[8]   GENERALIZATION OF THE KRAMERS-LANGER THEORY - DECAY OF THE METASTABLE STATE IN THE CASE OF STRONGLY ANISOTROPIC FRICTION [J].
BEREZHKOVSKII, AM ;
ZITSERMAN, VY .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (08) :2077-2092
[9]   MULTIDIMENSIONAL ACTIVATED RATE-PROCESSES WITH SLOWLY RELAXING MODE [J].
BEREZHKOVSKII, AM ;
ZITSERMAN, VY .
PHYSICA A, 1992, 187 (3-4) :519-550
[10]   ACTIVATED RATE-PROCESSES IN A MULTIDIMENSIONAL CASE - A NEW SOLUTION OF THE KRAMERS PROBLEM [J].
BEREZHKOVSKII, AM ;
ZITSERMAN, VY .
PHYSICA A, 1990, 166 (03) :585-621