Analysis of stacking disorder in ice I using pair distribution functions

被引:18
作者
Playford, Helen Y. [1 ]
Whale, Thomas F. [2 ]
Murray, Benjamin [2 ]
Tucker, Matt G. [3 ]
Salzmann, Christoph G. [4 ]
机构
[1] Rutherford Appleton Lab, STFC ISIS Facil, Didcot OX11 0QX, Oxon, England
[2] Univ Leeds, Sch Earth & Environm, Inst Climate & Atmospher Sci, Leeds LS2 9JT, W Yorkshire, England
[3] Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA
[4] UCL, Dept Chem, London WC1H 0AJ, England
基金
欧洲研究理事会; 英国自然环境研究理事会;
关键词
stacking disorder; polytypism; ice; total scattering; X-RAY-DIFFRACTION; CLOSE-PACKED CRYSTALS; POLYMORPHIC DOMAINS; HEXAGONAL DIAMOND; FAULTS; REFINEMENT; LONSDALEITE; SCATTERING; GRAPHITE; PROGRAM;
D O I
10.1107/S1600576718009056
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Stacking-disordered materials display crystalline order in two dimensions but are disordered along the direction in which layered structural motifs are stacked. Countless examples of stacking disorder exist, ranging from close-packed metals, ice I and diamond to open-framework materials and small-molecule pharmaceuticals. In general, the presence of stacking disorder can have profound consequences for the physical and chemical properties of a material. Traditional analyses of powder diffraction data are often complicated by the presence of memory effects in the stacking sequences. Here it is shown that experimental pair distribution functions of stacking-disordered ice I can be used to determine local information on the fractions of cubic and hexagonal stacking. Ice is a particularly challenging material in this respect, since both the stacking disorder and the orientational disorder of the water molecules need to be described. Memory effects are found to contribute very little to the pair distribution functions, and consequently, the analysis of pair distribution functions is the method of choice for characterizing stacking-disordered samples with complicated and high-order memory effects. In the context of this work, the limitations of current structure-reconstruction approaches are also discussed.
引用
收藏
页码:1211 / 1220
页数:10
相关论文
共 58 条
[1]   3D Transition Metal Ordering and Rietveld Stacking Fault Quantification in the New Oxychalcogenides La2O2Cu2-4xCd2xSe2 [J].
Ainsworth, Chris M. ;
Lewis, James W. ;
Wang, Chun-Hai ;
Coelho, Alan A. ;
Johnston, Hannah E. ;
Brand, Helen E. A. ;
Evans, John S. O. .
CHEMISTRY OF MATERIALS, 2016, 28 (09) :3184-3195
[2]   How Cubic Can Ice Be? [J].
Amaya, Andrew J. ;
Pathak, Harshad ;
Modak, Viraj P. ;
Laksmono, Hartawan ;
Loh, N. Duane ;
Sellberg, Jonas A. ;
Sierra, Raymond G. ;
McQueen, Trevor A. ;
Hayes, Matt J. ;
Williams, Garth J. ;
Messerschmidt, Marc ;
Boutet, Sebastien ;
Bogan, Michael J. ;
Nilsson, Anders ;
Stan, Claudiu A. ;
Wyslouzil, Barbara E. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (14) :3216-3222
[3]   Acetone adsorption on ice surfaces in the temperature range T=190-220 K:: Evidence for aging effects due to crystallographic changes of the adsorption sites [J].
Behr, P. ;
Terziyski, A. ;
Zellner, R. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2006, 110 (26) :8098-8107
[4]   EFFECT OF STACKING-FAULTS ON DIFFRACTION - THE STRUCTURE OF LITHIUM METAL [J].
BERLINER, R ;
WERNER, SA .
PHYSICAL REVIEW B, 1986, 34 (06) :3586-3603
[5]  
Bond AD, 2007, ANGEW CHEM INT EDIT, V46, P618, DOI 10.1002/anie.200603373
[6]   Distinct Disordered Forms of Promethazine Hydrochloride: A Case of lntergrowth of Polymorphic Domains? [J].
Borodi, Gheorghe ;
Pop, Mihaela M. ;
Onija, Oana ;
Filip, Xenia .
CRYSTAL GROWTH & DESIGN, 2012, 12 (12) :5846-5851
[7]   Unraveling Complexity in the Solid Form Screening of a Pharmaceutical Salt: Why so Many Forms? Why so Few? [J].
Braun, Doris E. ;
Lingireddy, Sreenivas R. ;
Beidelschies, Mark D. ;
Guo, Rui ;
Muller, Peter ;
Price, Sarah L. ;
Reutzel-Edens, Susan M. .
CRYSTAL GROWTH & DESIGN, 2017, 17 (10) :5349-5365
[8]   Packing polymorphism of a conformationally flexible molecule (aprepitant) [J].
Braun, Doris E. ;
Gelbrich, Thomas ;
Kahlenberg, Volker ;
Laus, Gerhard ;
Wieser, Josef ;
Griesser, Ulrich J. .
NEW JOURNAL OF CHEMISTRY, 2008, 32 (10) :1677-1685
[9]   HEXAGONAL DIAMOND - A NEW FORM OF CARBON [J].
BUNDY, FP ;
KASPER, JS .
JOURNAL OF CHEMICAL PHYSICS, 1967, 46 (09) :3437-&
[10]  
Buseck P. R., 1978, ACTA CRYSTALLOGR A, V34, P709