Ionically Conductive Self-Healing Polymer Binders with Poly(ether-thioureas) Segments for High-Performance Silicon Anodes in Lithium-Ion Batteries

被引:35
作者
Liu, Hongmei [1 ]
Wu, Qingping [2 ]
Guan, Xiang [3 ]
Liu, Mian [1 ]
Wang, Fei [1 ]
Li, Ruijiang [1 ]
Xu, Jun [1 ]
机构
[1] East China Univ Sci & Technol, Sch Chem Engn, Shanghai 200237, Peoples R China
[2] Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing 400714, Peoples R China
[3] Univ Manchester, Dept Mat, Manchester M13 9PL, Lancs, England
来源
ACS APPLIED ENERGY MATERIALS | 2022年 / 5卷 / 04期
关键词
lithium-ion battery; silicon anodes; polymeric binders; self-healing; lithium ionic conductivity; NANOPARTICLES; ELECTRODES; COMPOSITE; VERSATILE; SHEETS; ROBUST; ETHER;
D O I
10.1021/acsaem.2c00329
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
During repeated discharging and charging processes, the large volume change of Si causes the anode structure to break, resulting in poor cycle performance. The binder plays a vital role in reducing the volume expansion of Si. Herein, by grafting poly(ether-thioureas) (TUEG) on poly(acrylic acid) (PAA) through an amidation reaction, a self-healing polymer binder (PAA-TUEG) was designed and synthesized, which is beneficial for the fast Li ionic conduction and self-healing ability. Specifically, PAA-TUEG gel samples achieved 81% healing efficiency at room temperature without any external intervention. The Li-ion diffusion coefficient of the Si anode with PAA-TUEG as a binder reached 8.80 x 10(-5) cm(2) s(-1). Half batteries consisting of Si anodes using the PAA-TUEG polymer as a binder and lithium metal anodes exhibited an initial discharge capacity as high as 3676.1 mAh g(-1) with a Coulombic efficiency of 87.2%. A stable reversible capacity of 2744.3 mAh g(-1) with a capacity retention rate of 82% after 300 cycles was also realized. It indicates that the electrochemical performance of Si anodes with this polymer binder is significantly improved compared with that using conventional binders. Furthermore, the full cell composed of LiFePO4 cathodes and Si anodes with PAA-TUEG as a binder exhibits superior electrochemical performance. This concept of the polymeric binder, combining high Li-ion conductivity and self-healing ability, should be used to improve the cycle life of next-generation batteries using high-capacity materials that undergo huge volume changes during cycling.
引用
收藏
页码:4934 / 4944
页数:11
相关论文
共 50 条
  • [41] Tailoring the Polymer-Derived Carbon Encapsulated Silicon Nanoparticles for High-Performance Lithium-Ion Battery Anodes
    Ma, Qiang
    Xie, Hongwei
    Qu, Jiakang
    Zhao, Zhuqing
    Zhang, Beilei
    Song, Qiushi
    Xing, Pengfei
    Yin, Huayi
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (01) : 268 - 278
  • [42] Ion-Conducting Cross-Linked Polyphosphazene Binders for High- Performance Silicon Anodes in Lithium-Ion Batteries
    Hong, Dong Gi
    Jeong, Daun
    Koong, Chan Yeong
    Han, Ye-eun
    Lee, Heewon
    Lee, Jong-Chan
    ACS APPLIED POLYMER MATERIALS, 2023, 5 (04) : 2617 - 2627
  • [43] A Self-Healing Polymer Binder of Silicon-Based Anode with Enhanced Lithium-Ion Transport Performance
    Bai, Haomin
    Zhou, Zhi
    Yang, Bo
    Liu, Wentong
    Liu, Lili
    Wen, Jianwu
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (05)
  • [44] Self-healing alginate–carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries
    Zhao-Hui Wu
    Juan-Yu Yang
    Bing Yu
    Bi-Meng Shi
    Chun-Rong Zhao
    Zhang-Long Yu
    Rare Metals, 2019, 38 : 832 - 839
  • [45] To achieve controlled specific capacities of silicon-based anodes for high-performance lithium-ion batteries
    Ma, Yaodong
    Guo, Pengqian
    Liu, Mengting
    Cheng, Pu
    Zhang, Tianyao
    Liu, Jiande
    Liu, Dequan
    He, Deyan
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 905
  • [46] Novel binary regulated silicon-carbon materials as high-performance anodes for lithium-ion batteries
    He, Xinran
    Xiang, Xiaolin
    Pan, Piao
    Li, Peidong
    Cui, Yuehua
    NANOTECHNOLOGY, 2024, 35 (35)
  • [47] High-Performance Microsized Si Anodes for Lithium-Ion Batteries: Insights into the Polymer Configuration Conversion Mechanism
    Wang, Qiyu
    Zhu, Meng
    Chen, Guorong
    Dudko, Natalia
    Li, Yan
    Liu, Hongjiang
    Shi, Liyi
    Wu, Gang
    Zhang, Dengsong
    ADVANCED MATERIALS, 2022, 34 (16)
  • [48] A self-healing polymer electrolyte based on the DielsAlder reaction in lithium-ion batteries
    Zhang, Juansu
    Bai, Guoliang
    Wang, Chunhua
    Geng, Tingqing
    Wang, Jianyu
    Liu, Xingjiang
    Zhou, Xuehua
    Zhang, Jianli
    JOURNAL OF APPLIED POLYMER SCIENCE, 2024, 141 (23)
  • [49] Restorable Neutralization of Poly(acrylic acid) Binders toward Balanced Processing Properties and Cycling Performance for Silicon Anodes in Lithium-Ion Batteries
    Shi, Zhangxing
    Jiang, Sisi
    Robertson, Lily A.
    Zhao, Yuyue
    Sarnello, Erik
    Li, Tao
    Chen, Wei
    Zhang, Zhengcheng
    Zhang, Lu
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (52) : 57932 - 57940
  • [50] Stable Cycling of SiO2 Nanotubes as High-Performance Anodes for Lithium-Ion Batteries
    Favors, Zachary
    Wang, Wei
    Bay, Hamed Hosseini
    George, Aaron
    Ozkan, Mihrimah
    Ozkan, Cengiz S.
    SCIENTIFIC REPORTS, 2014, 4