Mirror symmetry for quasi-smooth Calabi-Yau hypersurfaces in weighted projective spaces

被引:2
|
作者
Batyrev, Victor [1 ]
Schaller, Karin [2 ]
机构
[1] Eberhard Karls Univ Tubingen, Math Inst, Morgenstelle 10, D-72076 Tubingen, Germany
[2] Free Univ Berlin, Math Inst, Arnimallee 3, D-14195 Berlin, Germany
关键词
Mirror symmetry; Calabi-Yau hypersurfaces; Toric varieties; Newton polytopes; VARIETIES; MANIFOLDS; DUALITY; VACUA;
D O I
10.1016/j.geomphys.2021.104198
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a d-dimensional well-formed weighted projective space P((w) over bar) as a toric variety associated with a fan Sigma(w) in N-(w) over bar circle times R whose 1- dimensional cones are spanned by primitive vectors v(0), v(1), ... , v(d) is an element of N-(w) over bar generating a lattice N-(w) over bar and satisfying the linear relation Sigma(i) w(i)v(i) = 0. For any fixed dimension d, there exist only finitely many weight vectors (w) over bar = (w(0), ... , w(d)) such that P((w) over bar) contains a quasi-smooth Calabi-Yau hyper-surface X-w defined by a transverse weighted homogeneous polynomial W of degree w = Sigma(d)(i=0) w(i). Using a formula of Vafa for the orbifold Euler number chi(orb)(X-w), we show that for any quasi-smooth Calabi-Yau hypersurface X-w the number (-1)(d-1) chi(orb)(X-w) equals the stringy Euler number chi(str)(X*((w) over bar)) of Calabi-Yau compactifications X*((w) over bar) of affine toric hypersurfaces Z((w) over bar) defined by non-degenerate Laurent polynomials f((w) over bar) is an element of C[N-(w) over bar] with Newton polytope conv({v(0), ... , v(d)}). In the moduli space of Laurent polynomials f((w) over bar) there always exists a special point f((w) over bar)(0) defining a mirror X*((w) over bar) with a Z/wZ-symmetry group such that X*((w) over tilde) is birational to a quotient of a Fermat hypersurface via a Shioda map. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] N = 2 SCVA’s FROM A GENERALIZED CALABI-YAU MANIFOLD AND MIRROR SYMMETRY
    胡森
    马文晔
    邱敬佩
    Acta Mathematica Scientia, 2009, (04) : 961 - 972
  • [32] N=2 SCVA's FROM A GENERALIZED CALABI-YAU MANIFOLD AND MIRROR SYMMETRY
    Hu Sen
    Ma Wenye
    Qiu Jingpei
    ACTA MATHEMATICA SCIENTIA, 2009, 29 (04) : 961 - 972
  • [33] Numerical spectra of the Laplacian for line bundles on Calabi-Yau hypersurfaces
    Ashmore, A.
    He, Y-H.
    Heyes, E.
    Ovrut, B. A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (07)
  • [34] LANDAU-GINZBURG/CALABI-YAU CORRESPONDENCE, GLOBAL MIRROR SYMMETRY AND ORLOV EQUIVALENCE
    Chiodo, Alessandro
    Iritani, Hiroshi
    Ruan, Yongbin
    PUBLICATIONS MATHEMATIQUES DE L IHES, 2014, (119): : 127 - 216
  • [35] The refined Swampland Distance Conjecture in Calabi-Yau moduli spaces
    Blumenhagen, Ralph
    Klaewer, Daniel
    Schlechter, Lorenz
    Wolf, Florian
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (06):
  • [36] The Arithmetic Mirror Symmetry and¶Calabi–Yau Manifolds
    Valeri A. Gritsenko
    Viacheslav V. Nikulin
    Communications in Mathematical Physics, 2000, 210 : 1 - 11
  • [37] Finiteness of Calabi-Yau Quasismooth Weighted Complete Intersections
    Chen, Jheng-Jie
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (12) : 3793 - 3809
  • [38] Remarks on projective normality for certain Calabi-Yau and hyperkahler varieties
    Mukherjee, Jayan
    Raychaudhury, Debaditya
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2020, 224 (10)
  • [39] Mirror symmetry of Calabi-Yau manifolds fibered by (1,8)-polarized abelian surfaces
    Hosono, Shinobu
    Takagi, Hiromichi
    COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2022, 16 (02) : 215 - 298
  • [40] Weak Coupling, Degeneration and Log Calabi-Yau Spaces
    Donagi, Ron
    Katz, Sheldon
    Wijnholt, Martijn
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2013, 9 (04) : 665 - 738