Mirror symmetry for quasi-smooth Calabi-Yau hypersurfaces in weighted projective spaces

被引:2
作者
Batyrev, Victor [1 ]
Schaller, Karin [2 ]
机构
[1] Eberhard Karls Univ Tubingen, Math Inst, Morgenstelle 10, D-72076 Tubingen, Germany
[2] Free Univ Berlin, Math Inst, Arnimallee 3, D-14195 Berlin, Germany
关键词
Mirror symmetry; Calabi-Yau hypersurfaces; Toric varieties; Newton polytopes; VARIETIES; MANIFOLDS; DUALITY; VACUA;
D O I
10.1016/j.geomphys.2021.104198
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a d-dimensional well-formed weighted projective space P((w) over bar) as a toric variety associated with a fan Sigma(w) in N-(w) over bar circle times R whose 1- dimensional cones are spanned by primitive vectors v(0), v(1), ... , v(d) is an element of N-(w) over bar generating a lattice N-(w) over bar and satisfying the linear relation Sigma(i) w(i)v(i) = 0. For any fixed dimension d, there exist only finitely many weight vectors (w) over bar = (w(0), ... , w(d)) such that P((w) over bar) contains a quasi-smooth Calabi-Yau hyper-surface X-w defined by a transverse weighted homogeneous polynomial W of degree w = Sigma(d)(i=0) w(i). Using a formula of Vafa for the orbifold Euler number chi(orb)(X-w), we show that for any quasi-smooth Calabi-Yau hypersurface X-w the number (-1)(d-1) chi(orb)(X-w) equals the stringy Euler number chi(str)(X*((w) over bar)) of Calabi-Yau compactifications X*((w) over bar) of affine toric hypersurfaces Z((w) over bar) defined by non-degenerate Laurent polynomials f((w) over bar) is an element of C[N-(w) over bar] with Newton polytope conv({v(0), ... , v(d)}). In the moduli space of Laurent polynomials f((w) over bar) there always exists a special point f((w) over bar)(0) defining a mirror X*((w) over bar) with a Z/wZ-symmetry group such that X*((w) over tilde) is birational to a quotient of a Fermat hypersurface via a Shioda map. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 40 条
[1]  
Adem Alejandro, 2007, Cambridge Tracts in Mathematics, V171, DOI 10.1017/CBO9780511543081
[2]   Families of Calabi-Yau hypersurfaces in Q-Fano toric varieties [J].
Artebani, Michela ;
Comparin, Paola ;
Guilbot, Robin .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 106 (02) :319-341
[3]   Stringy E-functions of canonical toric Fano threefolds and their applications [J].
Batyrev, V. V. ;
Schaller, K. .
IZVESTIYA MATHEMATICS, 2019, 83 (04) :676-697
[4]  
Batyrev V. V., 1997, INTEGRABLE SYSTEMS A, P1
[5]  
Batyrev V.V., 2020, INTERACTIONS LATTICE
[6]  
Batyrev V.V., 1994, J. Alg. Geom., V3, P493
[7]  
Batyrev V, 2017, PURE APPL MATH Q, V13, P1
[8]   Strong McKay correspondence, string-theoretic Hodge numbers and mirror symmetry [J].
Batyrev, VV ;
Dais, DI .
TOPOLOGY, 1996, 35 (04) :901-929
[9]   Mirror duality and string-theoretic Hodge numbers [J].
Batyrev, VV ;
Borisov, LA .
INVENTIONES MATHEMATICAE, 1996, 126 (01) :183-203
[10]   Berglund-Hubsch Mirror Symmetry via Vertex Algebras [J].
Borisov, Lev A. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 320 (01) :73-99