ImmunoAIzer: A Deep Learning-Based Computational Framework to Characterize Cell Distribution and Gene Mutation in Tumor Microenvironment

被引:21
作者
Bian, Chang [1 ,2 ]
Wang, Yu [1 ,2 ]
Lu, Zhihao [3 ]
An, Yu [1 ,4 ]
Wang, Hanfan [1 ,5 ]
Kong, Lingxin [1 ,2 ]
Du, Yang [1 ,2 ]
Tian, Jie [1 ,2 ,4 ,5 ]
机构
[1] Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, CAS Key Lab Mol Imaging, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
[3] Peking Univ Canc Hosp & Inst, Minist Educ, Key Lab Carcinogenesis & Translat Res, Dept Gastrointestinal Oncol, Beijing 100142, Peoples R China
[4] Beihang Univ, Sch Med Sci & Engn, Beijing Adv Innovat Ctr Big Data Based Precis Med, Beijing 100191, Peoples R China
[5] Xidian Univ, Sch Life Sci & Technol, Xian 710071, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金; 北京市自然科学基金;
关键词
deep learning; cell distribution; biomarker; tumor gene mutation; tumor microenvironment (TME); semi-supervised learning; hematoxylin and eosin (H& E); MULTIPLEXED IMMUNOHISTOCHEMISTRY; COLON-CANCER; PREDICTION; PATHOLOGY; FEATURES;
D O I
10.3390/cancers13071659
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Simple Summary A comprehensive evaluation of immune cell distribution in the tumor microenvironment (TME) and tumor gene mutation status may contribute to therapeutic optimization of cancer patients. In this study, we aimed to demonstrate that deep learning (DL)-based computational frameworks have remarkable potential as a tool to analyze the spatial distribution of immune cells and cancer cells in TME and detect tumor gene mutations. TME analysis can benefit from the computational framework, mainly due to its efficiency and low cost. Cells distribution in TME and tumor gene mutation status can be characterized accurately and efficiently. This may lead to a reduced working load of pathologists and may result in an improved and more standardized workflow. Spatial distribution of tumor infiltrating lymphocytes (TILs) and cancer cells in the tumor microenvironment (TME) along with tumor gene mutation status are of vital importance to the guidance of cancer immunotherapy and prognoses. In this work, we developed a deep learning-based computational framework, termed ImmunoAIzer, which involves: (1) the implementation of a semi-supervised strategy to train a cellular biomarker distribution prediction network (CBDPN) to make predictions of spatial distributions of CD3, CD20, PanCK, and DAPI biomarkers in the tumor microenvironment with an accuracy of 90.4%; (2) using CBDPN to select tumor areas on hematoxylin and eosin (H&E) staining tissue slides and training a multilabel tumor gene mutation detection network (TGMDN), which can detect APC, KRAS, and TP53 mutations with area-under-the-curve (AUC) values of 0.76, 0.77, and 0.79. These findings suggest that ImmunoAIzer could provide comprehensive information of cell distribution and tumor gene mutation status of colon cancer patients efficiently and less costly; hence, it could serve as an effective auxiliary tool for the guidance of immunotherapy and prognoses. The method is also generalizable and has the potential to be extended for application to other types of cancers other than colon cancer.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] DRecPy: A Python']Python Framework for Developing Deep Learning-Based Recommenders
    Colaco, Fabio
    Barros, Marcia
    Couto, Francisco M.
    RECSYS 2020: 14TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, 2020, : 675 - 680
  • [42] Deep Learning-Based Framework for Fast and Accurate Acoustic Hologram Generation
    Lee, Moon Hwan
    Lew, Hah Min
    Youn, Sangyeon
    Kim, Tae
    Hwang, Jae Youn
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2022, 69 (12) : 3353 - 3366
  • [43] ConvPred: A deep learning-based framework for predictions of potential organic reactions
    Wang, Wenlong
    Liu, Qilei
    Dong, Yachao
    Du, Jian
    Meng, Qingwei
    Zhang, Lei
    AICHE JOURNAL, 2023, 69 (05)
  • [44] A computational framework for IoT security integrating deep learning-based semantic algorithms for real-time threat response
    Ripal Ranpara
    Shobhit K. Patel
    Om Prakash Kumar
    Fahad Ahmed Al-Zahrani
    Scientific Reports, 15 (1)
  • [45] Real-Time Deep Learning-Based Object Detection Framework
    Tarimo, William
    Sabra, Moustafa M.
    Hendre, Shonan
    2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 1829 - 1836
  • [46] A deep learning-based CEP rule extraction framework for IoT data
    Mehmet Ulvi Simsek
    Feyza Yildirim Okay
    Suat Ozdemir
    The Journal of Supercomputing, 2021, 77 : 8563 - 8592
  • [47] A Deep Learning-Based Framework for Supporting Clinical Diagnosis of Glioblastoma Subtypes
    Munquad, Sana
    Si, Tapas
    Mallik, Saurav
    Das, Asim Bikas
    Zhao, Zhongming
    FRONTIERS IN GENETICS, 2022, 13
  • [48] Deep ensemble transfer learning-based framework for mammographic image classification
    Oza, Parita
    Sharma, Paawan
    Patel, Samir
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (07) : 8048 - 8069
  • [49] A deep learning-based automated framework for functional User Interface testing
    Khaliq, Zubair
    Farooq, Sheikh Umar
    Khan, Dawood Ashraf
    INFORMATION AND SOFTWARE TECHNOLOGY, 2022, 150
  • [50] A deep learning-based automated framework for functional User Interface testing
    Khaliq, Zubair
    Farooq, Sheikh Umar
    Khan, Dawood Ashraf
    INFORMATION AND SOFTWARE TECHNOLOGY, 2022, 150