Exact Traveling Wave Solutions of the Krichever-Novikov Equation: A Dynamical System Approach

被引:1
作者
Kou, KitIan [1 ]
Li, Jibin [2 ]
机构
[1] Univ Macau, Dept Math, Macau, Peoples R China
[2] Huaqiao Univ, Sch Math Sci, Quanzhou 362021, Fujian, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2017年 / 27卷 / 04期
基金
中国国家自然科学基金;
关键词
Integrable system; solitary wave solution; periodic wave solution; quasi-periodic wave solutions; Krichever-Novikov equation; SYMMETRIES;
D O I
10.1142/S0218127417500584
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show that to find the traveling wave solutions for the Krichever-Novikov equation, we only need to consider a spatial form F-VI of the fourth-order differential equations in the polynomial class having the Painleve property given by [Cosgrove, 2000]. By using the method of dynamical systems to analyze the dynamical behavior of the traveling wave solutions in some two-dimensional invariant manifolds, various exact solutions such as solitary wave solution, periodic wave solutions, quasi-periodic wave solutions and uncountably infinitely many unbounded wave solutions are obtained.
引用
收藏
页数:11
相关论文
共 16 条
[1]  
Adler VE, 1998, INT MATH RES NOTICES, V1998, P1
[2]  
Anco S. C., 2016, J PHYS A, V49
[3]  
[Anonymous], 1983, Sov. Math. Dokl
[4]  
[Anonymous], 1979, SOV MATH DOKL
[5]   Symmetry reductions and traveling wave solutions for the Krichever-Novikov equation [J].
Bruzon, M. S. ;
Gandarias, M. L. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2012, 35 (08) :869-876
[6]   Classical and nonclassical symmetries for the Krichever-Novikov equation [J].
Bruzon, M. S. ;
Gandarias, M. L. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2011, 168 (01) :875-885
[7]   Higher-order Painleve equations in the polynomial class I.: Bureau symbol P2 [J].
Cosgrove, CM .
STUDIES IN APPLIED MATHEMATICS, 2000, 104 (01) :1-65
[8]   MULTIPOTENTIALISATIONS AND ITERATING-SOLUTION FORMULAE: THE KRICHEVER-NOVIKOV EQUATION [J].
Euler, Norbert ;
Euler, Marianna .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2009, 16 :93-106
[9]   Nonlinear self-adjointness of the Krichever-Novikov equation [J].
Galiakberova, L. R. ;
Ibragimov, N. H. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (02) :361-363
[10]   Prolongation structure of the Krichever-Novikov equation [J].
Igonin, S ;
Martini, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (46) :9801-9810