Incorporating kinetic effects on Nernst advection in inertial fusion simulations

被引:20
作者
Brodrick, J. P. [1 ]
Sherlock, M. [2 ]
Farmer, W. A. [2 ]
Joglekar, A. S. [3 ]
Barrois, R. [4 ]
Wengraf, J. [5 ]
Bissell, J. J. [6 ]
Kingham, R. J. [7 ]
Del Sorbo, D. [1 ]
Read, M. P. [1 ]
Ridgers, C. P. [1 ]
机构
[1] Univ York, Dept Phys, York Plasma Inst, York YO10 5DD, N Yorkshire, England
[2] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA USA
[3] Univ Calif Los Angeles, Los Angeles, CA USA
[4] Univ Technol, Eindhoven, Netherlands
[5] Univ Manchester, Manchester, Lancs, England
[6] Univ Bath, Bath, Avon, England
[7] Imperial Coll London, Blackett Lab, Plasma Grp, London SW7 2AZ, England
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
Nernst; transport; nonlocal; LASER-PRODUCED PLASMAS; NONLOCAL ELECTRON-TRANSPORT; FOKKER-PLANCK EQUATION; MAGNETIC-FIELDS; HEAT-TRANSPORT; ION SOUND; MODEL; CODE;
D O I
10.1088/1361-6587/aaca0b
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a simple method to incorporate nonlocal effects on the Nernst advection of magnetic fields down steep temperature gradients, and demonstrate its effectiveness in a number of inertial fusion scenarios. This is based on assuming that the relationship between the Nernst velocity and the heat flow velocity is unaffected by nonlocality. The validity of this assumption is confirmed over a wide range of plasma conditions by comparing Vlasov-Fokker-Planck and flux-limited classical transport simulations. Additionally, we observe that the Righi-Leduc heat flow is more severely affected by nonlocality due to its dependence on high velocity moments of the electron distribution function, but are unable to suggest a reliable method of accounting for this in fluid simulations.
引用
收藏
页数:15
相关论文
共 85 条
  • [1] Electron temperature measurements inside the ablating plasma of gas-filled hohlraums at the National Ignition Facility
    Barrios, M. A.
    Liedahl, D. A.
    Schneider, M. B.
    Jones, O.
    Brown, G. V.
    Regan, S. P.
    Fournier, K. B.
    Moore, A. S.
    Ross, J. S.
    Landen, O.
    Kauffman, R. L.
    Nikroo, A.
    Kroll, J.
    Jaquez, J.
    Huang, H.
    Hansen, S. B.
    Callahan, D. A.
    Hinkel, D. E.
    Bradley, D.
    Moody, J. D.
    [J]. PHYSICS OF PLASMAS, 2016, 23 (05)
  • [2] Fast electron transport in laser-produced plasmas and the KALOS code for solution of the Vlasov-Fokker-Planck equation
    Bell, AR
    Robinson, APL
    Sherlock, M
    Kingham, RJ
    Rozmus, W
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2006, 48 (03) : R37 - R57
  • [3] Field Compressing Magnetothermal Instability in Laser Plasmas
    Bissell, J. J.
    Ridgers, C. P.
    Kingham, R. J.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 105 (17)
  • [4] Bissell J J, 2012, TECH REP
  • [5] MAGNETOHYDRODYNAMICS IN LASER FUSION - FLUID MODELING OF ENERGY-TRANSPORT IN LASER TARGETS
    BRACKBILL, JU
    GOLDMAN, SR
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) : 415 - 436
  • [6] AN IMPLICIT METHOD FOR ELECTROMAGNETIC PLASMA SIMULATION IN 2 DIMENSIONS
    BRACKBILL, JU
    FORSLUND, DW
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1982, 46 (02) : 271 - 308
  • [7] Braginskii S I, 1965, REV PLASMA PHYS, V1, P251
  • [8] A cell-centered diffusion scheme on two-dimensional unstructured meshes
    Breil, Jerome
    Maire, Pierre-Henri
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 224 (02) : 785 - 823
  • [9] Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics simulations
    Cao, Duc
    Moses, Gregory
    Delettrez, Jacques
    [J]. PHYSICS OF PLASMAS, 2015, 22 (08)
  • [10] Fusion Yield Enhancement in Magnetized Laser-Driven Implosions
    Chang, P. Y.
    Fiksel, G.
    Hohenberger, M.
    Knauer, J. P.
    Betti, R.
    Marshall, F. J.
    Meyerhofer, D. D.
    Seguin, F. H.
    Petrasso, R. D.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (03)