Facile synthesis of flexible electrode based on cotton/polypyrrole/multi-walled carbon nanotube composite for supercapacitors

被引:52
作者
Bo, Yang [1 ]
Zhao, Yaping [1 ,2 ]
Cai, Zaisheng [2 ]
Bahi, Addie [3 ]
Liu, Caihong [1 ]
Ko, Frank [3 ]
机构
[1] Donghua Univ, Coll Chem Chem Engn & Biotechnol, Shanghai 201620, Peoples R China
[2] Donghua Univ, Key Lab Sci & Technol Ecotext, Minist Educ, Shanghai 201620, Peoples R China
[3] Univ British Columbia, Dept Mat Engn, Vancouver, BC, Canada
基金
中国国家自然科学基金;
关键词
Flexible electrodes; Polypyrrole; Cotton/PPy/MWCNT; Chemical polymerazation; Flexible supercapacitors; HIGH-PERFORMANCE SUPERCAPACITOR; FABRIC ELECTRODES; ELECTROCHEMICAL PROPERTIES; POROUS GRAPHENE; ENERGY-STORAGE; FILMS; CLOTH;
D O I
10.1007/s10570-018-1845-9
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
Flexible electrodes made of cotton textile, polypyrrole (PPy) and multi-walled carbon nanotubes (MWCNT) composites were synthesized via a facile in situ chemical deposition method. This method involves a series of successive steps by immersing the cotton fabric in various MWCNT suspensions; adding monomers and p-toluene sulfonic acid (TsOH) as dopant under ultrasonic condition; and then initiating the polymerization by drop-in the oxidant. The fabricated electrodes exhibited a specific capacitance of 597 F g(-1) with good cycle stability (maintaining 96.8% after 1000 cycles). Symmetric all-solid-state supercapacitors based on cotton/PPy/MWCNT electrodes and poly(vinyl alcohol) (PVA)/H3PO4 gel electrolytes were fabricated and tested. The electrochemical measurements showed that assembled supercapacitors had a specific capacitance of 206.8 F g(-1) at a current density of 1 mA cm(-2). The supercapacitors were flexible enough to bend and twist with constant capacitance performance and exhibit 72% capacitance retention after 400 charge-discharge cycles. [GRAPHICS] .
引用
收藏
页码:4079 / 4091
页数:13
相关论文
共 48 条
[1]   Flexible robust binder-free carbon nanotube membranes for solid state and microcapacitor application [J].
Adu, Kofi ;
Ma, Danhao ;
Wang, Yuxiang ;
Spencer, Michael ;
Rajagopalan, Ramakrishnan ;
Wang, C-Yu ;
Randall, Clive .
NANOTECHNOLOGY, 2018, 29 (03)
[2]   Functionalisation of fabrics with conducting polymer for tuning capacitance and fabrication of supercapacitor [J].
Babu, K. Firoz ;
Subramanian, S. P. Siva ;
Kulandainathan, M. Anbu .
CARBOHYDRATE POLYMERS, 2013, 94 (01) :487-495
[3]   Towards Textile Energy Storage from Cotton T-Shirts [J].
Bao, Lihong ;
Li, Xiaodong .
ADVANCED MATERIALS, 2012, 24 (24) :3246-3252
[4]   Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors [J].
Beidaghi, Majid ;
Gogotsi, Yury .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (03) :867-884
[5]   Carbon-based composite materials for supercapacitor electrodes: a review [J].
Borenstein, Arie ;
Hanna, Ortal ;
Attias, Ran ;
Luski, Shalom ;
Brousse, Thierry ;
Aurbach, Doron .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (25) :12653-12672
[6]   High-Performance Supercapacitor Electrode Materials from Cellulose-Derived Carbon Nanofibers [J].
Cai, Jie ;
Niu, Haitao ;
Li, Zhenyu ;
Du, Yong ;
Cizek, Pavel ;
Xie, Zongli ;
Xiong, Hanguo ;
Lin, Tong .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (27) :14946-14953
[7]  
Ford ENJ, 2010, J ENG FIBER FABR, V5, P10
[8]   Graphene and Polymer Composites for Supercapacitor Applications: a Review [J].
Gao, Yang .
NANOSCALE RESEARCH LETTERS, 2017, 12
[9]   Foldable supercapacitors from triple networks of macroporous cellulose fibers, single-walled carbon nanotubes and polyaniline nanoribbons [J].
Ge, Dengteng ;
Yang, Lili ;
Fan, Lei ;
Zhang, Chuanfang ;
Xiao, Xu ;
Gogotsi, Yury ;
Yang, Shu .
NANO ENERGY, 2015, 11 :568-578
[10]   Energy and environmental nanotechnology in conductive paper and textiles [J].
Hu, Liangbing ;
Cui, Yi .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (04) :6423-6435