Branch-width, parse trees, and monadic second-order logic for matroids

被引:0
作者
Hlineny, P
机构
[1] Matej Bel Univ, Inst Math & Comp Sci, Banska Bystrica 97400, Slovakia
[2] Charles Univ, Inst Theoret Comp Sci, Prague 11800 1, Czech Republic
来源
STACS 2003, PROCEEDINGS | 2003年 / 2607卷
关键词
representable matroid; branch-width; monadic second-order logic; fixed-paxameter complexity;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We introduce "matroid parse trees" which, using only a limited amount of information, can build up all matroids of bounded branch-width representable over a finite field. We prove that if M is a family of matroids described by a sentence in the second-order monadic logic of matroids, then the parse trees of bounded-width representable members of M can be recognized by a finite tree automaton. Since the cycle matroids of graphs are representable over any finite field, our result directly extends the well-known "MS2-theorem" for graphs of bounded tree-width by Courcelle and others. This work has algorithmic applications in matroid or coding theories.
引用
收藏
页码:319 / 330
页数:12
相关论文
共 19 条
  • [11] Branch-width and well-quasi-ordering in matroids and graphs
    Geelen, JF
    Gerards, AMH
    Whittle, G
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2002, 84 (02) : 270 - 290
  • [12] GEELEN JF, 2002, EXCLUDED MINORS MATR
  • [13] HLINENY P, 2002, UNPUB IT HARD RECOGN
  • [14] HLINENY P, 2002, UNPUB TUTTE POLYNOMI
  • [15] HLINENY P, 2002, PARAMETRIZED ALGORIT
  • [16] HLINENY P, 2002, UNPUB BRANCH WIDTH P
  • [17] Hopcroft J. E., 2007, Introduction to Automata Theory, Languages and Computation
  • [18] OXLEY JG, 1997, MATROID THEORY
  • [19] GRAPH MINORS .10. OBSTRUCTIONS TO TREE-DECOMPOSITION
    ROBERTSON, N
    SEYMOUR, PD
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1991, 52 (02) : 153 - 190