The Predominance of Nongrowing Season Emissions to the Annual Methane Budget of a Semiarid Alpine Meadow on the Northeastern Qinghai-Tibetan Plateau

被引:4
作者
Li, Hongqin [1 ,2 ,3 ]
Zhu, Jingbin [4 ]
Zhang, Fawei [2 ,3 ,5 ]
Qin, Gang [1 ]
Yang, Yongsheng [2 ,3 ]
Li, Yikang [3 ]
Wang, Junbang [6 ]
Cao, Guangmin [3 ]
Li, Yingnian [1 ]
Zhou, Huakun [3 ,5 ]
Du, Mingyuan [7 ]
机构
[1] Luoyang Normal Univ, Coll Life Sci, Luoyang 471934, Henan, Peoples R China
[2] Chinese Acad Sci, Inst Sanjiangyuan Natl Pk, 23 Xinning St, Xining 810001, Qinghai, Peoples R China
[3] Chinese Acad Sci, Northwest Inst Plateau Biol, Key Lab Adaptat & Evolut Plateau Biota, Xining 810001, Qinghai, Peoples R China
[4] Zaozhuang Univ, Coll Tourism Resources & Environm, Zaozhuang 277100, Shandong, Peoples R China
[5] Chinese Acad Sci, Qinghai Prov Key Lab Restorat Ecol Cold Reg, Northwest Inst Plateau Biol, Xining 810001, Qinghai, Peoples R China
[6] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Ecosyst Network Observat & Modeling, Beijing 100101, Peoples R China
[7] Natl Agr & Food Res Org, Inst Agroenvironm Sci, Tsukuba, Ibaraki 3058604, Japan
基金
中国国家自然科学基金;
关键词
eddy covariance technique; methane flux; boosted regression trees; structural equation models; alpine meadow; qinghai-Tibetan Plateau; SPATIAL VARIABILITY; PLANT-COMMUNITIES; CO2; FLUXES; CH4; VEGETATION; GRASSLANDS; SHRUBLAND;
D O I
10.1007/s10021-021-00669-x
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The terrestrial methane budget varies between different vegetation types and soil conditions and is highly uncertain for alpine grasslands. This work used eddy covariance techniques to continuously measure CH4 flux (NEEm) over a semiarid alpine meadow on the northeastern Qinghai-Tibetan Plateau from January 2017 to August 2019. The diel NEEm averaged 0.14 +/- 0.98 nmol CH4 m(-2) s(-1) (mean +/- S.D.), with a rough pattern of daytime release and nocturnal uptake. The 8-day NEEm exhibited a similar sinusoid variation, with a peak of 6.8 mg CH4 m(-2) d(-1) at the end of April and a minimum of -1.5 mg CH4 m(-2) d(-1) at the end of August. The maximum release probably coincided with the thawing of frozen soil in the root zone, and the peak uptake may be related to high soil temperature. Monthly CH4 uptake was highest from June to September and consumed 51.7 mg CH4 m(-2) from the atmosphere. CH4 production in the other months totaled 647.6 mg CH4 m(-2). The semiarid alpine meadow thus acted as a weak net CH4 source, releasing ca 0.6 g CH4 m(-2) year(-1) to the atmosphere. The boosted regression trees analysis shows that the sensible heat flux (H) is positively related to half-hour NEEm and accounted for 34% of its variability. The piecewise structural equation models reveal that the magnitude of the effects from soil temperature and vapor pressure deficit on 8-day and monthly NEEm were almost equal, but acted in opposite directions. Vegetation growth and soil moisture exerted little direct influence on NEEm variability at half-hour, 8-day, or monthly scales. Our results show that CH4 emissions of the nongrowing season dominate the annual methane budget for this alpine meadow area. Methane consumption during the growing season was significantly constrained by low soil temperature and high soil water content. These findings imply that semiarid alpine meadows may consume more methane during the growing season if soil temperatures increase and soil moisture levels decrease as projected by future warming scenarios, thus constituting a climate change negative feedback.
引用
收藏
页码:526 / 536
页数:11
相关论文
共 50 条
  • [21] Temperature sensitivity of gross N transformation rates in an alpine meadow on the Qinghai-Tibetan Plateau
    Wang, Jing
    Zhang, Jinbo
    Mueller, Christoph
    Cai, Zucong
    JOURNAL OF SOILS AND SEDIMENTS, 2017, 17 (02) : 423 - 431
  • [22] Seasonal variations in carbon dioxide exchange in an alpine wetland meadow on the Qinghai-Tibetan Plateau
    Zhao, L.
    Li, J.
    Xu, S.
    Zhou, H.
    Li, Y.
    Gu, S.
    Zhao, X.
    BIOGEOSCIENCES, 2010, 7 (04) : 1207 - 1221
  • [23] Quantification of year-round methane and nitrous oxide fluxes in a typical alpine shrub meadow on the Qinghai-Tibetan Plateau
    Fu, Yongfeng
    Liu, Chunyan
    Lin, Fei
    Hu, Xiaoxia
    Zheng, Xunhua
    Zhang, Wei
    Ca, Guangmin
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2018, 255 : 27 - 36
  • [24] Distribution, stock, and influencing factors of soil organic carbon in an alpine meadow in the hinterland of the Qinghai-Tibetan Plateau
    Zhu, Xuchao
    Shao, Ming'an
    JOURNAL OF EARTH SYSTEM SCIENCE, 2018, 127 (05)
  • [25] Effect of degradation and rebuilding of artificial grasslands on soil respiration and carbon and nitrogen pools on an alpine meadow of the Qinghai-Tibetan Plateau
    Li Wen
    Wang Jinlan
    Zhang Xiaojiao
    Shi Shangli
    Cao Wenxia
    ECOLOGICAL ENGINEERING, 2018, 111 : 134 - 142
  • [26] Evapotranspiration and Its Energy Exchange in Alpine Meadow Ecosystem on the Qinghai-Tibetan Plateau
    Li Jie
    Jiang Sha
    Wang Bin
    Jiang Wei-wei
    Tang Yan-hong
    Du Ming-yuan
    Gu Song
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2013, 12 (08) : 1396 - 1401
  • [27] The response of soil macroinvertebrates to alpine meadow degradation in the Qinghai-Tibetan Plateau, China
    Wu, Pengfei
    Zhang, Hongzhi
    Wang, Yong
    APPLIED SOIL ECOLOGY, 2015, 90 : 60 - 67
  • [28] Evapotranspiration and Its Energy Exchange in Alpine Meadow Ecosystem on the Qinghai-Tibetan Plateau
    LI Jie
    JIANG Sha
    WANG Bin
    JIANG Wei-wei
    TANG Yan-hong
    DU Ming-yuan
    GU Song
    Journal of Integrative Agriculture, 2013, 12 (08) : 1396 - 1401
  • [29] Scaling effects on landscape metrics in alpine meadow on the central Qinghai-Tibetan Plateau
    Zhang, Wei
    Zhang, Jinglin
    GLOBAL ECOLOGY AND CONSERVATION, 2021, 29
  • [30] Methane Emissions Offset Net Carbon Dioxide Uptake From an Alpine Peatland on the Eastern Qinghai-Tibetan Plateau
    Peng, Haijun
    Chi, Jinshu
    Yao, Hu
    Guo, Qian
    Hong, Bing
    Ding, Hanwei
    Zhu, Yongxuan
    Wang, Jie
    Hong, Yetang
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2021, 126 (19)