Spatially Coupled Generalized LDPC Codes: Asymptotic Analysis and Finite Length Scaling

被引:8
作者
Mitchell, David G. M. [1 ]
Olmos, Pablo M. [2 ]
Lentmaier, Michael [3 ]
Costello, Daniel J., Jr. [4 ]
机构
[1] New Mexico State Univ, Klipsch Sch Elect & Comp Engn, Las Cruces, NM 88003 USA
[2] Univ Carlos III Madrid, Signal Theory & Commun Dept, Leganes 28911, Spain
[3] Lund Univ, Dept Elect & Informat Technol, S-22100 Lund, Sweden
[4] Univ Notre Dame, Dept Elect Engn, Notre Dame, IN 46556 USA
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
Block codes; Iterative decoding; Complexity theory; Message passing; Maximum likelihood decoding; Electronic mail; Convolutional codes; Generalized LDPC codes; spatially coupled codes; iterative decoding thresholds; minimum distance; finite length scaling; PARITY-CHECK CODES; CONVOLUTIONAL-CODES; ERASURE CHANNEL; ENSEMBLES; DISTANCE;
D O I
10.1109/TIT.2021.3071743
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Generalized low-density parity-check (GLDPC) codes are a class of LDPC codes in which the standard single parity check (SPC) constraints are replaced by constraints defined by a linear block code. These stronger constraints typically result in improved error floor performance, due to better minimum distance and trapping set properties, at a cost of some increased decoding complexity. In this paper, we study spatially coupled generalized low-density parity-check (SC-GLDPC) codes and present a comprehensive analysis of these codes, including: (1) an iterative decoding threshold analysis of SC-GLDPC code ensembles demonstrating capacity approaching thresholds via the threshold saturation effect; (2) an asymptotic analysis of the minimum distance and free distance properties of SC-GLDPC code ensembles, demonstrating that the ensembles are asymptotically good; and (3) an analysis of the finite-length scaling behavior of both GLDPC block codes and SC-GLDPC codes based on a peeling decoder (PD) operating on a binary erasure channel (BEC). Results are compared to GLDPC block codes, and the advantages and disadvantages of SC-GLDPC codes are discussed.
引用
收藏
页码:3708 / 3723
页数:16
相关论文
共 45 条
[1]   Enumerators for Protograph-Based Ensembles of LDPC and Generalized LDPC Codes [J].
Abu-Surra, Shadi ;
Divsalar, Dariush ;
Ryan, William E. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (02) :858-886
[2]   Finite-Length Scaling for Iteratively Decoded LDPC Ensembles [J].
Amraoui, Abdelaziz ;
Montanari, Andrea ;
Richardson, Tom ;
Urbanke, Ruediger .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (02) :473-498
[3]  
[Anonymous], 2003, 42154 JET PROP LAB
[4]   Extrinsic information transfer functions: Model and erasure channel properties [J].
Ashikhmin, A ;
Kramer, G ;
ten Brink, S .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (11) :2657-2673
[5]  
Boutros J., 1999, 1999 IEEE International Conference on Communications (Cat. No. 99CH36311), P441, DOI 10.1109/ICC.1999.767979
[6]   Outcomes for Patients Who Contact the Emergency Ambulance Service and Are Not Transported to the Emergency Department: A Data Linkage Study [J].
Coster, Joanne ;
O'Cathain, Alicia ;
Jacques, Richard ;
Crum, Annabel ;
Siriwardena, A. Niroshan ;
Turner, Janette .
PREHOSPITAL EMERGENCY CARE, 2019, 23 (04) :566-577
[7]   Time-varying periodic convolutional codes with low-density parity-check matrix [J].
Felstrom, AJ ;
Zigangirov, KS .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (06) :2181-2191
[8]   LOW-DENSITY PARITY-CHECK CODES [J].
GALLAGER, RG .
IRE TRANSACTIONS ON INFORMATION THEORY, 1962, 8 (01) :21-&
[9]   Density Evolution for Deterministic Generalized Product Codes on the Binary Erasure Channel at High Rates [J].
Hager, Christian ;
Pfister, Henry D. ;
Graell i Amat, Alexandre ;
Brannstrom, Fredrik .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (07) :4357-4378
[10]   Windowed Decoding of Protograph-Based LDPC Convolutional Codes Over Erasure Channels [J].
Iyengar, Aravind R. ;
Papaleo, Marco ;
Siegel, Paul H. ;
Wolf, Jack Keil ;
Vanelli-Coralli, Alessandro ;
Corazza, Giovanni E. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (04) :2303-2320