Application of the Debye function to systems of crystallites

被引:23
作者
Beyerlein, Kenneth R. [1 ,2 ]
Snyder, Robert L. [1 ]
Li, Mo [1 ]
Scardi, Paolo [2 ]
机构
[1] Georgia Inst Technol, Atlanta, GA 30332 USA
[2] Univ Trent, Dept Mat Engn & Ind Technol, Trento, Italy
关键词
X-ray diffraction; Debye function; atomistic simulation; nanoparticle; nanocrystalline material; coherency; Williamson-Hall plot; whole powder pattern modeling; line profile analysis; X-RAY-DIFFRACTION; ANGLE NEUTRON-SCATTERING; CLOSELY PACKED SPHERES; ELECTRON-DIFFRACTION; PROFILE ANALYSIS; THIN-FILMS; PATTERN; SIZE; MICROSTRUCTURE; STACKING;
D O I
10.1080/14786435.2010.501769
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Debye function was used to simulate the X-ray powder diffraction patterns from loose-packed systems of nanocrystals. The resulting patterns contain local atomic lattice information in the wide-angle region as well as long range, inter-particle structure features in the small-angle region. Both monodisperse and polydisperse systems of particles were considered in this study. The minimum number of particles necessary in the system to generate an accurate pattern is shown to increase with the system polydispersity. Diffraction patterns from a powder of uniformly oriented particles were simulated to show that the observation of coherency in bulk nanocrystalline materials is unlikely. Furthermore, the accuracy of the Williamson-Hall plot was studied by analyzing the simulated patterns. Whereas this study was focused on systems of loose particles, the results also might suggest some guidelines and considerations when diffraction patterns are simulated from atomistic models of nanocrystalline bulk materials.
引用
收藏
页码:3891 / 3905
页数:15
相关论文
共 38 条
[2]   Debye equation versus Whole Powder Pattern Modelling: Real versus reciprocal space modelling of nanomaterials [J].
Beyerlein, K. ;
Cervellino, A. ;
Leoni, M. ;
Snyder, R. L. ;
Scardi, P. .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2009, :85-90
[3]   Williamson-Hall anisotropy in nanocrystalline metals: X-ray diffraction experiments and atomistic simulations [J].
Brandstetter, S. ;
Derlet, P. M. ;
Van Petegem, S. ;
Van Swygenhoven, H. .
ACTA MATERIALIA, 2008, 56 (02) :165-176
[4]   Nanoparticle size distribution estimation by a full-pattern powder diffraction analysis [J].
Cervellino, A ;
Giannini, C ;
Guagliardi, A ;
Ladisa, M .
PHYSICAL REVIEW B, 2005, 72 (03)
[5]   Determination of nanoparticle structure type, size and strain distribution from X-ray data for monatomic f.c.c.-derived non-crystallographic nanoclusters [J].
Cervellino, A ;
Giannini, C ;
Guagliardi, A .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2003, 36 :1148-1158
[6]   Colloidal synthesis and characterization of tetrapod-shaped magnetic nanocrystals [J].
Cozzoli, P. Davide ;
Snoeck, Etienne ;
Garcia, Miguel Angel ;
Giannini, Cinzia ;
Guagliardi, Antonietta ;
Cervellino, Antonio ;
Gozzo, Fabia ;
Hernando, Antonio ;
Achterhold, Klaus ;
Ciobanu, Nelica ;
Parak, Fritz G. ;
Cingolani, Roberto ;
Manna, Liberato .
NANO LETTERS, 2006, 6 (09) :1966-1972
[7]  
Debye P, 1915, ANN PHYS-BERLIN, V46, P809
[8]   Calculation of x-ray spectra for nanocrystalline materials [J].
Derlet, PM ;
Van Petegem, S ;
Van Swygenhoven, H .
PHYSICAL REVIEW B, 2005, 71 (02)
[9]   Stacking and twin faults in close-packed crystal structures: exact description of random faulting statistics for the full range of faulting probabilities [J].
Estevez-Rams, E. ;
Welzel, U. ;
Madrigal, A. Penton ;
Mittemeijer, E. J. .
ACTA CRYSTALLOGRAPHICA SECTION A, 2008, 64 :537-548
[10]   On the powder diffraction pattern of crystals with stacking faults [J].
Estevez-Rams, E ;
Leoni, M ;
Scardi, P ;
Aragon-Fernandez, B ;
Fuess, H .
PHILOSOPHICAL MAGAZINE, 2003, 83 (36) :4045-4057