Radiomics-based prediction of microsatellite instability in colorectal cancer at initial computed tomography evaluation

被引:91
作者
Pernicka, Jennifer S. Golia [1 ]
Gagniere, Johan [2 ,4 ]
Chakraborty, Jayasree [2 ]
Yamashita, Rikiya [1 ]
Nardo, Lorenzo [1 ,5 ]
Creasy, John M. [2 ]
Petkovska, Iva [1 ]
Do, Richard R. K. [1 ]
Bates, David D. B. [1 ]
Paroder, Viktoriya [1 ]
Gonen, Mithat [3 ]
Weiser, Martin R. [2 ]
Simpson, Amber L. [2 ]
Gollub, Marc J. [1 ]
机构
[1] Mem Sloan Kettering Canc Ctr, Evelyn H Lauder Breast Ctr, Dept Radiol, Body Imaging Serv, 300 East 66th St,Suite 757, New York, NY 10065 USA
[2] Mem Sloan Kettering Canc Ctr, Dept Surg, New York, NY USA
[3] Mem Sloan Kettering Canc Ctr, Dept Epidemiol & Biostat, New York, NY 10021 USA
[4] Clermont Auvergne Univ, Univ Hosp Clermont Ferrand, INSERM U1071, Dept Digest & Hepatobiliary Surg, Clermont Ferrand, France
[5] Univ Calif Davis, Dept Radiol, Sacramento, CA 95817 USA
关键词
Colon; Colonic neoplasms; Microsatellite repeats; Microsatellite instability; Immunotherapy; TEXTURE ANALYSIS;
D O I
10.1007/s00261-019-02117-w
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose To predict microsatellite instability (MSI) status of colon cancer on preoperative CT imaging using radiomic analysis. Methods This retrospective study involved radiomic analysis of preoperative CT imaging of patients who underwent resection of stage II-III colon cancer from 2004 to 2012. A radiologist blinded to MSI status manually segmented the tumor region on CT images. 254 Intensity-based radiomic features were extracted from the tumor region. Three prediction models were developed with (1) only clinical features, (2) only radiomic features, and (3) "combined" clinical and radiomic features. Patients were randomly separated into training (n=139) and test (n=59) sets. The model was constructed from training data only; the test set was reserved for validation only. Model performance was evaluated using AUC, sensitivity, specificity, PPV, and NPV. Results Of the total 198 patients, 134 (68%) patients had microsatellite stable tumors and 64 (32%) patients had MSI tumors. The combined model performed slightly better than the other models, predicting MSI with an AUC of 0.80 for the training set and 0.79 for the test set (specificity=96.8% and 92.5%, respectively), whereas the model with only clinical features achieved an AUC of 0.74 and the model with only radiomic features achieved an AUC of 0.76. The model with clinical features alone had the lowest specificity (70%) compared with the model with radiomic features alone (95%) and the combined model (92.5%). Conclusions Preoperative prediction of MSI status via radiomic analysis of preoperative CT adds specificity to clinical assessment and could contribute to personalized treatment selection.
引用
收藏
页码:3755 / 3763
页数:9
相关论文
共 35 条
[1]   Texture analysis of aggressive and nonaggressive lung tumor CE CT images [J].
Al-Kadi, Omar S. ;
Watson, D. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2008, 55 (07) :1822-1830
[2]   Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer [J].
Andre, T ;
Boni, C ;
Mounedji-Boudiaf, L ;
Navarro, M ;
Tabernero, J ;
Hickish, T ;
Topham, C ;
Zaninelli, M ;
Clingan, P ;
Bridgewater, J ;
Tabah-Fisch, I ;
de Gramont, A .
NEW ENGLAND JOURNAL OF MEDICINE, 2004, 350 (23) :2343-2351
[3]  
[Anonymous], 2021, PLYMOUTH M
[4]   Preoperative risk prediction for intraductal papillary mucinous neoplasms by quantitative CT image analysis [J].
Attiyeh, Marc A. ;
Chakraborty, Jayasree ;
Gazit, Lior ;
Langdon-Embry, Liana ;
Gonen, Mithat ;
Balachandran, Vinod P. ;
D'Angelica, Michael I. ;
DeMatteo, Ronald P. ;
Jarnagin, William R. ;
Kingham, T. Peter ;
Allen, Peter J. ;
Do, Richard K. ;
Simpson, Amber L. .
HPB, 2019, 21 (02) :212-218
[5]  
Biau G, 2012, J MACH LEARN RES, V13, P1063
[6]   Screening for Colorectal Cancer US Preventive Services Task Force Recommendation Statement [J].
Bibbins-Domingo, Kirsten ;
Grossman, David C. ;
Curry, Susan J. ;
Davidson, Karina W. ;
Epling, John W., Jr. ;
Garcia, Francisco A. R. ;
Gillman, Matthew W. ;
Harper, Diane M. ;
Kemper, Alex R. ;
Krist, Alex H. ;
Kurth, Ann E. ;
Landefeld, C. Seth ;
Mangione, Carol M. ;
Owens, Douglas K. ;
Phillips, William R. ;
Phipps, Maureen G. ;
Pignone, Michael P. ;
Siu, Albert L. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2016, 315 (23) :2564-2575
[7]  
Boland CR, 2010, GASTROENTEROLOGY, V138, P2073, DOI [10.1053/j.gastro.2009.12.064, 10.1053/j.gastro.2010.04.024]
[8]   Adoption of Total Neoadjuvant Therapy for Locally Advanced Rectal Cancer [J].
Cercek, Andrea ;
Roxburgh, Campbell S. D. ;
Strombom, Paul ;
Smith, J. Joshua ;
Temple, Larissa K. F. ;
Nash, Garrett M. ;
Guillem, Jose G. ;
Paty, Philip B. ;
Yaeger, Rona ;
Stadler, Zsofia K. ;
Seier, Kenneth ;
Gonen, Mithat ;
Segal, Neil H. ;
Reidy, Diane L. ;
Varghese, Anna ;
Shia, Jinru ;
Vakiani, Efsevia ;
Wu, Abraham J. ;
Crane, Christopher H. ;
Gollub, Marc J. ;
Garcia-Aguilar, Julio ;
Saltz, Leonard B. ;
Weiser, Martin R. .
JAMA ONCOLOGY, 2018, 4 (06)
[9]   Preliminary study of tumor heterogeneity in imaging predicts two year survival in pancreatic cancer patients [J].
Chakraborty, Jayasree ;
Langdon-Embry, Liana ;
Cunanan, Kristen M. ;
Escalon, Joanna G. ;
Allen, Peter J. ;
Lowery, Maeve A. ;
O'Reilly, Eileen M. ;
Gonen, Mithat ;
Do, Richard G. ;
Simpson, Amber L. .
PLOS ONE, 2017, 12 (12)
[10]   Statistical measures of orientation of texture for the detection of architectural distortion in prior mammograms of interval-cancer [J].
Chakraborty, Jayasree ;
Rangayyan, Rangaraj M. ;
Banik, Shantanu ;
Mukhopadhyay, Sudipta ;
Desautels, J. E. Leo .
JOURNAL OF ELECTRONIC IMAGING, 2012, 21 (03)