Top-Gated Graphene Nanoribbon Transistors with Ultrathin High-k Dielectrics

被引:148
|
作者
Liao, Lei [1 ]
Bai, Jingwei [2 ]
Cheng, Rui [2 ]
Lin, Yung-Chen [2 ]
Jiang, Shan [1 ]
Huang, Yu [2 ,3 ]
Duan, Xiangfeng [1 ,3 ]
机构
[1] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Calif Nanosyst Inst, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
Nanoelectronics; graphene nanoribbon; core-shell nanowire; transistor; transconductance; ATOMIC LAYER DEPOSITION; HFO2; THIN-FILMS;
D O I
10.1021/nl100840z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The integration ultrathin high dielectric constant (high-k) materials with graphene nanoribbons (GNRs) for top-gated transistors can push their performance limit for nanoscale electronics. Here we report the assembly of Si/HfO2 core/shell nanowires on top of individual GNRs as the top-gates for GNR held-effect transistors with ultrathin high-k dielectrics. The Si/HfO2 core/shell nanowires are synthesized by atomic layer deposition of the HfO2 shell on highly doped silicon nanowires with a precise control of the dielectric thickness down to 1-2 nm. Using the core/shell nanowires as the top-gates, high-performance GNR transistors have been achieved with transconductance reaching 3.2 mS mu m(-1). the highest value for GNR transistors reported to date. This method, for the first time, demonstrates the effective integration of ultrathin high-k dielectrics with graphene with precisely controlled thickness and quality, representing an important step toward high-performance graphene electronics.
引用
收藏
页码:1917 / 1921
页数:5
相关论文
共 50 条
  • [21] Top-Gated Graphene Field-Effect Transistors Using Graphene on Si (111) Wafers
    Moon, J. S.
    Curtis, D.
    Bui, S.
    Marshall, T.
    Wheeler, D.
    Valles, I.
    Kim, S.
    Wang, E.
    Weng, X.
    Fanton, M.
    IEEE ELECTRON DEVICE LETTERS, 2010, 31 (11) : 1193 - 1195
  • [22] High mobility top-gated pentacene thin-film transistors
    1600, American Institute of Physics Inc. (98):
  • [23] Extraction of the capacitance of ultrathin high-K gate dielectrics
    Kar, S
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2003, 50 (10) : 2112 - 2119
  • [24] Hysteresis-Free Nanosecond Pulsed Electrical Characterization of Top-Gated Graphene Transistors
    Carrion, Enrique A.
    Serov, Andrey Y.
    Islam, Sharnali
    Behnam, Ashkan
    Malik, Akshay
    Xiong, Feng
    Bianchi, Massimiliano
    Sordan, Roman
    Pop, Eric
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2014, 61 (05) : 1583 - 1589
  • [25] A triboelectric charge top-gated graphene transistor
    Qu, Weimiao
    Liu, Weihua
    Li, Xin
    Wang, Xiaoli
    DIAMOND AND RELATED MATERIALS, 2017, 73 : 33 - 38
  • [26] Functionalized Graphene as an Ultrathin Seed Layer for the Atomic Layer Deposition of Conformal High-k Dielectrics on Graphene
    Shin, Woo Cheol
    Bong, Jae Hoon
    Choi, Sung-Yool
    Cho, Byung Jin
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (22) : 11515 - 11519
  • [27] Top-Gated Graphene Field-Effect Transistors with High Normalized Transconductance and Designable Dirac Point Voltage
    Xu, Huilong
    Zhang, Zhiyong
    Xu, Haitao
    Wang, Zhenxing
    Wang, Sheng
    Peng, Lian-Mao
    ACS NANO, 2011, 5 (06) : 5031 - 5037
  • [28] Graphene Nanoribbon Field-Effect Transistors with Top-Gate Polymer Dielectrics
    Jeong, Beomjin
    Wuttke, Michael
    Zhou, Yazhou
    Muellen, Klaus
    Narita, Akimitsu
    Asadi, Kamal
    ACS APPLIED ELECTRONIC MATERIALS, 2022, 4 (06) : 2667 - 2671
  • [29] Electronic Transport Properties in Top-gated Epitaxial Graphene on Silicon Carbide with ALD Al2O3 High-k Dielectric
    Neal, Adam T.
    Gu, Jiangjiang
    Bolen, Mike
    Shen, Tian
    Capano, Mike
    Engle, Lloyd
    Ye, Peide D.
    2010 18TH BIENNIAL UNIVERSITY/GOVERNMENT/INDUSTRY MICRO-NANO SYMPOSIUM, 2010,
  • [30] Current saturation in zero-bandgap, top-gated graphene field-effect transistors
    Inanc Meric
    Melinda Y. Han
    Andrea F. Young
    Barbaros Ozyilmaz
    Philip Kim
    Kenneth L. Shepard
    Nature Nanotechnology, 2008, 3 : 654 - 659