Inverse Boundary Value Problem for the Stokes and the Navier-Stokes Equations in the Plane

被引:16
|
作者
Lai, Ru-Yu [1 ]
Uhlmann, Gunther [1 ]
Wang, Jenn-Nan [2 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
[2] Natl Taiwan Univ, Inst Appl Math Sci, NCTS Tapei, Taipei 106, Taiwan
基金
美国国家科学基金会;
关键词
Stokes Equation; Order System; Cauchy Data; Boundary Measurement; Inverse Boundary;
D O I
10.1007/s00205-014-0794-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove in two dimensions the global identifiability of the viscosity in an incompressible fluid by making boundary measurements. The main contribution of this work is to use more natural boundary measurements, the Cauchy forces, than the Dirichlet-to-Neumann map previously considered in Imanuvilov and Yamamoto (Global uniqueness in inverse boundary value problems for Navier-Stokes equations and Lam, ststem in two dimensions. arXiv: 1309.1694, 2013) to prove the uniqueness of the viscosity for the Stokes equations and for the Navier-Stokes equations.
引用
收藏
页码:811 / 829
页数:19
相关论文
共 50 条