On the dynamic behavior of second-order exponential-type fuzzy difference equations

被引:12
作者
Zhang, Qianhong [1 ]
Zhang, Wenzhuan [2 ]
Lin, Fubiao [1 ]
Li, Dongyang [1 ]
机构
[1] Guizhou Univ Finance & Econ, Sch Math & Stat, Guiyang 550025, Guizhou, Peoples R China
[2] Guizhou Univ Finance & Econ, Guizhou Key Lab Econ Syst Simulat, Guiyang 550025, Guizhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Fuzzy difference equation; g-Division; Boundedness; Persistence; Global asymptotic behavior; MODEL;
D O I
10.1016/j.fss.2020.07.021
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper is concerned with dynamical behaviors of a second-order exponential-type fuzzy difference equation x(n+1) = A + Be-xn/C+(xn-1), n = 0,1, . . . , where A, B, C and the initial values x-(1), x(0) are positive fuzzy numbers. Applying generalization of division (g-division) of fuzzy numbers, we study the existence of positive fuzzy solution and the global asymptotic behavior of the model. Moreover, two simulation examples are given to show the validity of the theoretical results. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:169 / 187
页数:19
相关论文
共 37 条
[1]  
Agarwal R., 1992, DIFFERENCE EQUATIONS
[2]  
[Anonymous], 1998, Possibility Theory: An Approach to Computerized Processing of Uncertainty
[3]  
[Anonymous], 1994, Metric Spaces of Fuzzy Sets: Theory and applications
[4]  
Bede B, 2013, STUD FUZZ SOFT COMP, V295, P1, DOI 10.1007/978-3-642-35221-8
[5]   Revisiting fuzzy differential equations [J].
Bhaskar, TG ;
Lakshmikantham, V ;
Devi, V .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 58 (3-4) :351-358
[6]   On the fuzzy difference equations of finance [J].
Chrysafis, Konstantinos A. ;
Papadopoulos, Basil K. ;
Papaschinopoulos, G. .
FUZZY SETS AND SYSTEMS, 2008, 159 (24) :3259-3270
[7]   Analysis by fuzzy difference equations of a model of CO2 level in the blood [J].
Deeba, EY ;
de Korvin, A .
APPLIED MATHEMATICS LETTERS, 1999, 12 (03) :33-40
[8]  
Deeba EY., 1996, Journal of Difference Equations and Applications, V2, P365, DOI DOI 10.1080/10236199608808071
[9]   Stability Analysis of a System of Exponential Difference Equations [J].
Din, Q. ;
Khan, K. A. ;
Nosheen, A. .
DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2014, 2014
[10]   Global stability of a population model [J].
Din, Q. .
CHAOS SOLITONS & FRACTALS, 2014, 59 :119-128