Hochschild homology of rings of algebraic integers

被引:0
|
作者
Soto, JJM [1 ]
机构
[1] Univ Santiago de Compostela, Fac Matemat, Dept Algebra, E-15771 Santiago De Compostela, Spain
关键词
Commutative Algebra; Algebraic Integer; Homology Theory; Hochschild Homology;
D O I
10.1007/PL00000429
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to remind that the Andre-Quillen homology theory is a very useful tool to study Hochschild homology of commutative algebras. We choose as an example a computation of Hochschild homology of Dedekind extensions.
引用
收藏
页码:113 / 115
页数:3
相关论文
共 50 条
  • [21] Twisted Hochschild homology of quantum hyperplanes
    Sitarz, A
    K-THEORY, 2005, 35 (1-2): : 187 - 198
  • [22] Hochschild homology of twisted tensor products
    Guccione, JA
    Guccione, JJ
    K-THEORY, 1999, 18 (04): : 363 - 400
  • [23] ON THE MORITA INVARIANCE OF THE HOCHSCHILD HOMOLOGY OF SUPERALGEBRAS
    Blaga, Paul A.
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2006, 51 (01): : 41 - 48
  • [24] Dennis supertrace and the Hochschild homology of supermatrices
    Blaga, P. A.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2009, 16 (03) : 384 - 390
  • [25] Modified Hochschild and Periodic Cyclic Homology
    Teleman, Nicolae
    C(ASTERISK)-ALGEBRAS AND ELLIPTIC THEORY II, 2008, : 251 - 265
  • [26] Reductions of algebraic integers
    Debry, Christophe
    Perucca, Antonella
    JOURNAL OF NUMBER THEORY, 2016, 167 : 259 - 283
  • [27] On the Hochschild homology of proper Lie groupoids
    Pflaum, Markus J.
    Posthuma, Hessel
    Tang, Xiang
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2023, 17 (01) : 101 - 162
  • [28] Higher Hochschild homology is not a stable invariant
    Dundas, Bjorn Ian
    Tenti, Andrea
    MATHEMATISCHE ZEITSCHRIFT, 2018, 290 (1-2) : 145 - 154
  • [29] Higher Hochschild homology is not a stable invariant
    Bjørn Ian Dundas
    Andrea Tenti
    Mathematische Zeitschrift, 2018, 290 : 145 - 154
  • [30] LOCALIZATION OF MONOID OBJECTS AND HOCHSCHILD HOMOLOGY
    Banerjee, Abhishek
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (10) : 4548 - 4558