Hochschild homology of rings of algebraic integers
被引:0
|
作者:
Soto, JJM
论文数: 0引用数: 0
h-index: 0
机构:
Univ Santiago de Compostela, Fac Matemat, Dept Algebra, E-15771 Santiago De Compostela, SpainUniv Santiago de Compostela, Fac Matemat, Dept Algebra, E-15771 Santiago De Compostela, Spain
Soto, JJM
[1
]
机构:
[1] Univ Santiago de Compostela, Fac Matemat, Dept Algebra, E-15771 Santiago De Compostela, Spain
The purpose of this paper is to remind that the Andre-Quillen homology theory is a very useful tool to study Hochschild homology of commutative algebras. We choose as an example a computation of Hochschild homology of Dedekind extensions.
机构:
Univ Warwick, Math Inst, Zeeman Bldg, Coventry CV4 7AL, W Midlands, EnglandUniv Warwick, Math Inst, Zeeman Bldg, Coventry CV4 7AL, W Midlands, England
Dotto, Emanuele
Moi, Kristian
论文数: 0引用数: 0
h-index: 0
机构:
KTH Royal Inst Technol, Dept Math, SE-10044 Stockholm, SwedenUniv Warwick, Math Inst, Zeeman Bldg, Coventry CV4 7AL, W Midlands, England
Moi, Kristian
Patchkoria, Irakli
论文数: 0引用数: 0
h-index: 0
机构:
Univ Aberdeen, Inst Math, Fraser Noble Bldg, Aberdeen AB24 3UE, ScotlandUniv Warwick, Math Inst, Zeeman Bldg, Coventry CV4 7AL, W Midlands, England
Patchkoria, Irakli
Reeh, Sune Precht
论文数: 0引用数: 0
h-index: 0
机构:Univ Warwick, Math Inst, Zeeman Bldg, Coventry CV4 7AL, W Midlands, England