Skull Modeling Effects in Conductivity Estimates Using Parametric Electrical Impedance Tomography

被引:37
作者
Fernandez-Corazza, Mariano [1 ,2 ]
Turovets, Sergei [2 ,3 ]
Phan Luu [2 ,3 ,4 ]
Price, Nick [5 ]
Muravchik, Carlos Horacio [1 ,6 ]
Tucker, Don [2 ,3 ,4 ]
机构
[1] Univ Nacl La Plata, CONICET, LEICI Inst Invest Elect Control & Procesamiento S, RA-1900 La Plata, Buenos Aires, Argentina
[2] Univ Oregon, Neuroinformat Ctr, Eugene, OR 97403 USA
[3] Philips EGI, Eugene, OR 97403 USA
[4] Univ Oregon, Dept Psychol, Eugene, OR 97403 USA
[5] Oregon Dept Human Serv, Eugene, OR USA
[6] Comis Invest Cient, La Plata, Buenos Aires, Argentina
关键词
Electrical impedance tomography; skull electrical conductivity; bioimpedance; biomedical signal processing; electroencephalography; DIRECT-CURRENT STIMULATION; HUMAN HEAD; IN-VIVO; VOLUME CONDUCTOR; DIELECTRIC-PROPERTIES; SOURCE LOCALIZATION; FIELD DISTRIBUTION; BRAIN; EEG; EIT;
D O I
10.1109/TBME.2017.2777143
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective: To estimate scalp, skull, compact bone, and marrow bone electrical conductivity values based on electrical impedance tomography (EIT) measurements, and to determine the influence of skull modeling details on the estimates. Methods: We collected EIT data with 62 current injection pairs and built five 6-8 million finite element (FE) head models with different grades of skull simplifications for four subjects, including three whose head models serve as Atlases in the scientific literature and in commercial equipment (Colin27 and EGI's Geosource atlases). We estimated electrical conductivity of the scalp, skull, marrow bone, and compact bone tissues for each current injection pair, each model, and each subject. Results: Closure of skull holes in FE models, use of simplified four-layer boundary element method-like models, and neglecting the CSF layer produce an overestimation of the skull conductivity of 10%, 10%-20%, and 20%-30%, respectively (accumulated overestimation of 50%-70%). The average extracted conductivities are 288 +/- 53 (the scalp), 4.3 +/- 0.08 (the compact bone), and 5.5 + 1.25 (the whole skull) mS/m. The marrow bone estimates showed large dispersion. Conclusion: Present EIT estimates for the skull conductivity are lower than typical literature reference values, but previous in vivo EIT results are likely overestimated due to the use of simpler models. Significance: Typical literature values of 7-10 mS/m for skull conductivity should be replaced by the present estimated values when using detailed skull head models. We also provide subject specific conductivity estimates for widely used Atlas head models.
引用
收藏
页码:1785 / 1797
页数:13
相关论文
共 50 条
[41]   Visualizing combustion using electrical impedance tomography [J].
Waterfall, RC ;
He, RH ;
Beck, CM .
CHEMICAL ENGINEERING SCIENCE, 1997, 52 (13) :2129-2138
[42]   RECOVERING CONDUCTIVITY AT THE BOUNDARY IN THREE-DIMENSIONAL ELECTRICAL IMPEDANCE TOMOGRAPHY [J].
Nakamura, Gen ;
Ronkanen, Paivi ;
Siltanen, Samuli ;
Tanuma, Kazumi .
INVERSE PROBLEMS AND IMAGING, 2011, 5 (02) :485-510
[43]   Reconstruction of conductivity distribution with a compound variational strategy in electrical impedance tomography [J].
Shi, Yanyan ;
Tian, Zhiwei ;
Wang, Meng ;
Rao, Zuguang ;
Fu, Feng .
INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2022, 32 (01) :295-306
[44]   Enhanced imaging of piezoresistive nanocomposites through the incorporation of nonlocal conductivity changes in electrical impedance tomography [J].
Hassan, Hashim ;
Semperlotti, Fabio ;
Wang, Kon-Well ;
Tallman, Tyler N. .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2018, 29 (09) :1850-1861
[45]   High-resolution conductivity reconstruction by electrical impedance tomography using structure-aware hybrid-fusion learning [J].
Yu, Hao ;
Liu, Haoyu ;
Liu, Zhe ;
Wang, Zeyu ;
Jia, Jiabin .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2024, 243
[46]   Evaluating and Reducing the Influence of Scalp Dehydration in the Monitoring of Intracranial Dehydration Using Electrical Impedance Tomography [J].
Li, Haoting ;
Cao, Lu ;
Xu, Canhua ;
Yang, Bin ;
Dai, Meng ;
Shi, Xuetao ;
Dong, Xiuzhen ;
Fu, Feng .
IEEE ACCESS, 2020, 8 :105047-105054
[47]   Finite element modeling for volume phantom in Electrical Impedance Tomography [J].
Rybina, I. O. .
VISNYK NTUU KPI SERIIA-RADIOTEKHNIKA RADIOAPARATOBUDUVANNIA, 2011, (46) :72-84
[48]   Robust imaging using electrical impedance tomography: review of current tools [J].
Brazey, Benoit ;
Haddab, Yassine ;
Zemiti, Nabil .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 478 (2258)
[49]   Electrical Impedance Tomography Imaging Using Gauss-Newton Algorithm [J].
Islam, Md Rabiul ;
Kiber, Md Adnan .
2014 INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS & VISION (ICIEV), 2014,
[50]   Regional Lung Perfusion Using Different Indicators in Electrical Impedance Tomography [J].
Gaulton, Timothy G. ;
Martin, Kevin ;
Xin, Yi ;
Victor, Marcus ;
Santiago, Roberta Ribeiro De Santis ;
Amato, Marcelo Britto Passos ;
Berra, Lorenzo ;
Cereda, Maurizio .
JOURNAL OF APPLIED PHYSIOLOGY, 2023, 135 (03) :500-507