Skull Modeling Effects in Conductivity Estimates Using Parametric Electrical Impedance Tomography

被引:37
作者
Fernandez-Corazza, Mariano [1 ,2 ]
Turovets, Sergei [2 ,3 ]
Phan Luu [2 ,3 ,4 ]
Price, Nick [5 ]
Muravchik, Carlos Horacio [1 ,6 ]
Tucker, Don [2 ,3 ,4 ]
机构
[1] Univ Nacl La Plata, CONICET, LEICI Inst Invest Elect Control & Procesamiento S, RA-1900 La Plata, Buenos Aires, Argentina
[2] Univ Oregon, Neuroinformat Ctr, Eugene, OR 97403 USA
[3] Philips EGI, Eugene, OR 97403 USA
[4] Univ Oregon, Dept Psychol, Eugene, OR 97403 USA
[5] Oregon Dept Human Serv, Eugene, OR USA
[6] Comis Invest Cient, La Plata, Buenos Aires, Argentina
关键词
Electrical impedance tomography; skull electrical conductivity; bioimpedance; biomedical signal processing; electroencephalography; DIRECT-CURRENT STIMULATION; HUMAN HEAD; IN-VIVO; VOLUME CONDUCTOR; DIELECTRIC-PROPERTIES; SOURCE LOCALIZATION; FIELD DISTRIBUTION; BRAIN; EEG; EIT;
D O I
10.1109/TBME.2017.2777143
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective: To estimate scalp, skull, compact bone, and marrow bone electrical conductivity values based on electrical impedance tomography (EIT) measurements, and to determine the influence of skull modeling details on the estimates. Methods: We collected EIT data with 62 current injection pairs and built five 6-8 million finite element (FE) head models with different grades of skull simplifications for four subjects, including three whose head models serve as Atlases in the scientific literature and in commercial equipment (Colin27 and EGI's Geosource atlases). We estimated electrical conductivity of the scalp, skull, marrow bone, and compact bone tissues for each current injection pair, each model, and each subject. Results: Closure of skull holes in FE models, use of simplified four-layer boundary element method-like models, and neglecting the CSF layer produce an overestimation of the skull conductivity of 10%, 10%-20%, and 20%-30%, respectively (accumulated overestimation of 50%-70%). The average extracted conductivities are 288 +/- 53 (the scalp), 4.3 +/- 0.08 (the compact bone), and 5.5 + 1.25 (the whole skull) mS/m. The marrow bone estimates showed large dispersion. Conclusion: Present EIT estimates for the skull conductivity are lower than typical literature reference values, but previous in vivo EIT results are likely overestimated due to the use of simpler models. Significance: Typical literature values of 7-10 mS/m for skull conductivity should be replaced by the present estimated values when using detailed skull head models. We also provide subject specific conductivity estimates for widely used Atlas head models.
引用
收藏
页码:1785 / 1797
页数:13
相关论文
共 50 条
  • [31] Resolution-Controlled Conductivity Discretization in Electrical Impedance Tomography
    Winkler, Robert
    Rieder, Andreas
    SIAM JOURNAL ON IMAGING SCIENCES, 2014, 7 (04): : 2048 - 2077
  • [32] Magnetic resonance electrical impedance tomography for measuring electrical conductivity during electroporation
    Kranjc, M.
    Bajd, F.
    Sersa, I.
    Miklavcic, D.
    PHYSIOLOGICAL MEASUREMENT, 2014, 35 (06) : 985 - 996
  • [33] Electrical conductivity imaging using magnetic resonance tomography
    Katscher, Ulrich
    Voigt, Tobias
    Findeklee, Christian
    2009 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-20, 2009, : 3162 - 3164
  • [34] Series reversion for electrical impedance tomography with modeling errors *
    Garde, H.
    Hyvonen, N.
    Kuutela, T.
    INVERSE PROBLEMS, 2023, 39 (08)
  • [35] Fuzzy modeling of electrical impedance tomography images of the lungs
    Tanaka, Harki
    Siqueira Ortega, Neli Regina
    Galizia, Mauricio Stanzione
    Borges, Joao Batista
    Passos Amato, Marcelo Britto
    CLINICS, 2008, 63 (03) : 363 - 370
  • [36] IMAGING OF CONDUCTIVITY DISTRIBUTION BASED ON A COMBINED RECONSTRUCTION METHOD IN BRAIN ELECTRICAL IMPEDANCE TOMOGRAPHY
    Shi, Yanyan
    Lou, Yajun
    Wang, Meng
    Zheng, Shuo
    Tian, Zhiwei
    Fu, Feng
    INVERSE PROBLEMS AND IMAGING, 2022, : 542 - 561
  • [37] Classification of stroke using neural networks in electrical impedance tomography
    Agnelli, J. P.
    Col, A.
    Lassas, M.
    Murthy, R.
    Santacesaria, M.
    Siltanen, S.
    INVERSE PROBLEMS, 2020, 36 (11)
  • [38] Estimation of conductivity distribution based on fast inversion using eigenvalue and eigenvector in electrical impedance tomography
    Kim, Bong Seok
    Kim, Kyung Youn
    FLOW MEASUREMENT AND INSTRUMENTATION, 2015, 46 : 276 - 283
  • [39] Conductivity reconstructions using real data from a new planar electrical impedance tomography device
    Georgi, K. -H.
    Haehnlein, C.
    Schilcher, K.
    Sebu, C.
    Spiesberger, H.
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2013, 21 (05) : 801 - 822
  • [40] Real-time imaging of epileptic seizures in rats using electrical impedance tomography
    Wang, Lei
    Sun, Yang
    Xu, Xinmin
    Dong, Xiuzhen
    Gao, Feng
    NEUROREPORT, 2017, 28 (11) : 689 - 693