Skull Modeling Effects in Conductivity Estimates Using Parametric Electrical Impedance Tomography

被引:41
作者
Fernandez-Corazza, Mariano [1 ,2 ]
Turovets, Sergei [2 ,3 ]
Phan Luu [2 ,3 ,4 ]
Price, Nick [5 ]
Muravchik, Carlos Horacio [1 ,6 ]
Tucker, Don [2 ,3 ,4 ]
机构
[1] Univ Nacl La Plata, CONICET, LEICI Inst Invest Elect Control & Procesamiento S, RA-1900 La Plata, Buenos Aires, Argentina
[2] Univ Oregon, Neuroinformat Ctr, Eugene, OR 97403 USA
[3] Philips EGI, Eugene, OR 97403 USA
[4] Univ Oregon, Dept Psychol, Eugene, OR 97403 USA
[5] Oregon Dept Human Serv, Eugene, OR USA
[6] Comis Invest Cient, La Plata, Buenos Aires, Argentina
关键词
Electrical impedance tomography; skull electrical conductivity; bioimpedance; biomedical signal processing; electroencephalography; DIRECT-CURRENT STIMULATION; HUMAN HEAD; IN-VIVO; VOLUME CONDUCTOR; DIELECTRIC-PROPERTIES; SOURCE LOCALIZATION; FIELD DISTRIBUTION; BRAIN; EEG; EIT;
D O I
10.1109/TBME.2017.2777143
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective: To estimate scalp, skull, compact bone, and marrow bone electrical conductivity values based on electrical impedance tomography (EIT) measurements, and to determine the influence of skull modeling details on the estimates. Methods: We collected EIT data with 62 current injection pairs and built five 6-8 million finite element (FE) head models with different grades of skull simplifications for four subjects, including three whose head models serve as Atlases in the scientific literature and in commercial equipment (Colin27 and EGI's Geosource atlases). We estimated electrical conductivity of the scalp, skull, marrow bone, and compact bone tissues for each current injection pair, each model, and each subject. Results: Closure of skull holes in FE models, use of simplified four-layer boundary element method-like models, and neglecting the CSF layer produce an overestimation of the skull conductivity of 10%, 10%-20%, and 20%-30%, respectively (accumulated overestimation of 50%-70%). The average extracted conductivities are 288 +/- 53 (the scalp), 4.3 +/- 0.08 (the compact bone), and 5.5 + 1.25 (the whole skull) mS/m. The marrow bone estimates showed large dispersion. Conclusion: Present EIT estimates for the skull conductivity are lower than typical literature reference values, but previous in vivo EIT results are likely overestimated due to the use of simpler models. Significance: Typical literature values of 7-10 mS/m for skull conductivity should be replaced by the present estimated values when using detailed skull head models. We also provide subject specific conductivity estimates for widely used Atlas head models.
引用
收藏
页码:1785 / 1797
页数:13
相关论文
共 104 条
[1]   Use of anisotropic modelling in electrical impedance tomography; Description of method and preliminary assessment of utility in imaging brain function in the adult human head [J].
Abascal, Juan-Felipe P. J. ;
Arridge, Simon R. ;
Atkinson, David ;
Horesh, Raya ;
Fabrizi, Lorenzo ;
De Lucia, Marzia ;
Horesh, Lior ;
Bayford, Richard H. ;
Holder, David S. .
NEUROIMAGE, 2008, 43 (02) :258-268
[2]   Simultaneous head tissue conductivity and EEG source location estimation [J].
Acar, Zeynep Akalin ;
Acar, Can E. ;
Makeig, Scott .
NEUROIMAGE, 2016, 124 :168-180
[3]   Neuroelectromagnetic Forward Head Modeling Toolbox [J].
Acar, Zeynep Akalin ;
Makeig, Scott .
JOURNAL OF NEUROSCIENCE METHODS, 2010, 190 (02) :258-270
[4]   A model for frequency dependence of conductivities of the live human skull [J].
Akhtari, M ;
Bryant, HC ;
Emin, D ;
Merrifield, W ;
Mamelak, AN ;
Flynn, ER ;
Shih, JJ ;
Mandelkern, M ;
Matlachov, A ;
Ranken, DM ;
Best, ED ;
DiMauro, MA ;
Lee, RR ;
Sutherling, WW .
BRAIN TOPOGRAPHY, 2003, 16 (01) :39-55
[5]   Conductivities of three-layer live human skull [J].
Akhtari, M ;
Bryant, HC ;
Marnelak, AN ;
Flynn, ER ;
Heller, L ;
Shih, JJ ;
Mandelkern, M ;
Matlachov, A ;
Ranken, DM ;
Best, ED ;
DiMauro, MA ;
Lee, RR ;
Sutherling, WW .
BRAIN TOPOGRAPHY, 2002, 14 (03) :151-167
[6]  
[Anonymous], 2011, Computational Intelligence and Neuroscience
[7]  
[Anonymous], 2016, CGAL PROJECT CGAL US
[8]  
[Anonymous], 2008, 2008 4 INT C WIRELES
[9]  
[Anonymous], 1994, TEMPLATES SOLUTION L, DOI DOI 10.1137/1.9781611971538
[10]  
[Anonymous], FINITE ELEMENTS ELEC