Rigid resolutions and big Betti numbers

被引:27
作者
Conca, A
Herzog, J
Hibi, T
机构
[1] DIMA, Dipartimento Matemat, I-16146 Genoa, Italy
[2] Osaka Univ, Grad Sch Sci, Dept Math, Osaka 5600043, Japan
[3] Univ Duisburg Essen, Fachbereich Math & Informat, D-45117 Essen, Germany
关键词
free resolutions; generic initial ideals; componentwise linear ideals;
D O I
10.1007/s00014-004-0812-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Betti-numbers of a graded ideal I in a polynomial ring and the Betti-numbers of its generic initial ideal Gin(I) are compared. In characteristic zero it is shown that if these Betti-numbers coincide in some homological degree, then they coincide in all higher homological degrees. We also compare the Betti-numbers of componentwise linear ideals which are contained in each other and have the same Hilbert polynomial.
引用
收藏
页码:826 / 839
页数:14
相关论文
共 19 条
[1]   Almost regular sequences and Betti numbers [J].
Aramova, A ;
Herzog, J .
AMERICAN JOURNAL OF MATHEMATICS, 2000, 122 (04) :689-719
[2]   Ideals with stable Betti numbers [J].
Aramova, A ;
Herzog, J ;
Hibi, T .
ADVANCES IN MATHEMATICS, 2000, 152 (01) :72-77
[3]   A CRITERION FOR DETECTING M-REGULARITY [J].
BAYER, D ;
STILLMAN, M .
INVENTIONES MATHEMATICAE, 1987, 87 (01) :1-11
[4]  
Bayer D. A., 1982, Ph.D. dissertation
[5]   UPPER-BOUNDS FOR THE BETTI NUMBERS OF A GIVEN HILBERT FUNCTION [J].
BIGATTI, AM .
COMMUNICATIONS IN ALGEBRA, 1993, 21 (07) :2317-2334
[6]  
BRUNS W, 1996, COHENMACAULAY RINGS
[7]  
Capani A., COCOA SYSTEM DOING C
[8]   Reduction numbers and initial ideals [J].
Conca, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (04) :1015-1020
[9]  
CONCA A, IN PRESS T AMS
[10]   INITIAL IDEALS, VERONESE SUBRINGS, AND RATES OF ALGEBRAS [J].
EISENBUD, D ;
REEVES, A ;
TOTARO, B .
ADVANCES IN MATHEMATICS, 1994, 109 (02) :168-187