A gap for PPT entanglement

被引:4
作者
Cariello, D. [1 ,2 ]
机构
[1] Univ Fed Uberlandia, Fac Matemat, BR-38400902 Uberlandia, MG, Brazil
[2] Univ Complutense Madrid, Dept Anal Matemat, Fac Ciencias Matemat, Plaza Ciencias 3, E-28040 Madrid, Spain
关键词
Symmetric tensors; Tensor rank 1; PPT matrix; Entanglement; Separability; CROSS-NORM CRITERION; SEPARABILITY; MATRICES; STATES;
D O I
10.1016/j.laa.2017.04.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let W be a finite dimensional vector space over a field with characteristic not equal to 2. Denote by V-S and V-A the subspaces of symmetric and antisymmetric tensors of a subspace V of W circle times W, respectively. In this paper we show that if V is generated by tensors with tensor rank 1, V = V-s circle plus V-A and W is the smallest vector space such that V subset of W circle times W then dim(V-S) >= max{2dim(V-A)/dim(W),dim(W)/2} This result has a straightforward application to the separability problem in Quantum Information Theory: If rho is an element of M-k circle times M-k similar or equal to M-k(2) is separable then rank((Id F)rho(Id + F)) >= max{2/r rank((Id - F)rho(Id - F)), r/2} where M-n, is the set of complex matrices of order n, F epsilon M-k circle times M-k is the flip operator, Id epsilon M-k circle times M-k is the identity and r is the marginal rank of rho+ F rho F. We prove the sharpness of this inequality. This inequality is a necessary condition for separability. Moreover, we show that if p epsilon M-k circle times M-k is positive under partial transposition (PPT) and rank((Id + F)rho(Id + F)) =1 then rho is separable. This result follows from Perron Frobenius theory. We also present a large family of PPT matrices satisfying rank(Id + F)rho(Id + F) >= r >= F) 2/r-1rank (Id - F) X rho(Id + F). There is a possibility that a PPT matrix rho epsilon M-k epsilon M-k satisfying 1 < rank(Id + F)rho(Id+ F)rho(Id + F) < 2/r-1rank (Id - F)rho(Id + F) exists.In this case rho is entangled. This is a gap where we can look for PPT entanglement. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:89 / 114
页数:26
相关论文
共 16 条
[1]   Entangled symmetric states of N qubits with all positive partial transpositions [J].
Augusiak, R. ;
Tura, J. ;
Samsonowicz, J. ;
Lewenstein, M. .
PHYSICAL REVIEW A, 2012, 86 (04)
[2]   Unextendible product bases and bound entanglement [J].
Bennett, CH ;
DiVincenzo, DP ;
Mor, T ;
Shor, PW ;
Smolin, JA ;
Terhal, BM .
PHYSICAL REVIEW LETTERS, 1999, 82 (26) :5385-5388
[3]   Completely Reducible Maps in Quantum Information Theory [J].
Cariello, Daniel .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (04) :1721-1732
[4]  
Cariello D, 2015, QUANTUM INF COMPUT, V15, P812
[5]  
Cariello D, 2014, QUANTUM INF COMPUT, V14, P1308
[6]  
Chen K, 2003, QUANTUM INF COMPUT, V3, P193
[7]   SPECTRAL PROPERTIES OF POSITIVE MAPS ON CSTAR-ALGEBRAS [J].
EVANS, DE ;
HOEGHKROHN, R .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1978, 17 (APR) :345-355
[8]   Separability of mixed states: Necessary and sufficient conditions [J].
Horodecki, M ;
Horodecki, P ;
Horodecki, R .
PHYSICS LETTERS A, 1996, 223 (1-2) :1-8
[9]   Separability criterion and inseparable mixed states with positive partial transposition [J].
Horodecki, P .
PHYSICS LETTERS A, 1997, 232 (05) :333-339
[10]   Rank two bipartite bound entangled states do not exist [J].
Horodecki, P ;
Smolin, JA ;
Terhal, BM ;
Thapliyal, AV .
THEORETICAL COMPUTER SCIENCE, 2003, 292 (03) :589-596