Layer thickness-dependent phonon properties and thermal conductivity of MoS2

被引:162
作者
Gu, Xiaokun [1 ]
Li, Baowen [1 ]
Yang, Ronggui [1 ,2 ]
机构
[1] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA
[2] Univ Colorado, Mat Sci & Engn Program, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
THERMOELECTRIC PERFORMANCE; RAMAN; SCATTERING; TRANSPORT;
D O I
10.1063/1.4942827
中图分类号
O59 [应用物理学];
学科分类号
摘要
For conventional materials, the thermal conductivity of thin films is usually suppressed when the thickness decreases due to phonon-boundary scattering. However, this is not necessarily true for the van der Waals solids if the thickness is reduced to only a few layers. In this letter, the layer thickness-dependent phonon properties and thermal conductivity in the few-layer MoS2 are studied using the first-principles-based Peierls-Boltzmann transport equation approach. The basal-plane thermal conductivity of 10-mu m-long samples is found to monotonically reduce from 138W/mK to 98 W/mK for naturally occurring MoS2, and from 155 W/mK to 115 W/mK for isotopically pure MoS2, when its thickness increases from one layer to three layers. The thermal conductivity of tri-layer MoS2 approaches to that of bulk MoS2. Both the change of phonon dispersion and the thickness-induced anharmonicity are important for explaining such a thermal conductivity reduction. The increased anharmonicity in bi-layer MoS2 results in stronger phonon scattering for ZA(i) modes, which is linked to the breakdown of the symmetry in single-layer MoS2. (C) 2016 AIP Publishing LLC.
引用
收藏
页数:8
相关论文
共 54 条
[1]  
Barron T.H. K., 1974, DYNAMICAL PROPERTIES, P391
[2]   Intrinsic lattice thermal conductivity of semiconductors from first principles [J].
Broido, D. A. ;
Malorny, M. ;
Birner, G. ;
Mingo, Natalio ;
Stewart, D. A. .
APPLIED PHYSICS LETTERS, 2007, 91 (23)
[3]   Evaluation of computational techniques for solving the Boltzmann transport equation for lattice thermal conductivity calculations [J].
Chernatynskiy, Aleksandr ;
Phillpot, Simon R. .
PHYSICAL REVIEW B, 2010, 82 (13)
[4]  
Chhowalla M, 2013, NAT CHEM, V5, P263, DOI [10.1038/nchem.1589, 10.1038/NCHEM.1589]
[5]   Avoided crossing of rattler modes in thermoelectric materials [J].
Christensen, Mogens ;
Abrahamsen, Asger B. ;
Christensen, Niels B. ;
Juranyi, Fanni ;
Andersen, Niels H. ;
Lefmann, Kim ;
Andreasson, Jakob ;
Bahl, Christian R. H. ;
Iversen, Bo B. .
NATURE MATERIALS, 2008, 7 (10) :811-815
[6]   In-plane and cross-plane thermal conductivities of molybdenum disulfide [J].
Ding, Zhiwei ;
Jiang, Jin-Wu ;
Pei, Qing-Xiang ;
Zhang, Yong-Wei .
NANOTECHNOLOGY, 2015, 26 (06)
[7]   Theoretical study of the lattice thermal conductivity in Ge framework semiconductors [J].
Dong, JJ ;
Sankey, OF ;
Myles, CW .
PHYSICAL REVIEW LETTERS, 2001, 86 (11) :2361-2364
[8]   Heat transport in silicon from first-principles calculations [J].
Esfarjani, Keivan ;
Chen, Gang ;
Stokes, Harold T. .
PHYSICAL REVIEW B, 2011, 84 (08)
[9]   Ab initio variational approach for evaluating lattice thermal conductivity [J].
Fugallo, Giorgia ;
Lazzeri, Michele ;
Paulatto, Lorenzo ;
Mauri, Francesco .
PHYSICAL REVIEW B, 2013, 88 (04)
[10]  
Ghosh S, 2010, NAT MATER, V9, P555, DOI [10.1038/NMAT2753, 10.1038/nmat2753]