APOL1 Kidney Risk Variants Induce Cell Death via Mitochondrial Translocation and Opening of the Mitochondrial Permeability Transition Pore

被引:62
|
作者
Shah, Shrijal S. [1 ]
Lannon, Herbert [1 ]
Dias, Leny [1 ]
Zhang, Jia-Yue [1 ]
Alper, Seth L. [1 ]
Pollak, Martin R. [1 ]
Friedman, David J. [1 ]
机构
[1] Harvard Med Sch, Beth Israel Deaconess Med Ctr, Dept Med, Renal Div, Boston, MA 02115 USA
来源
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY | 2019年 / 30卷 / 12期
基金
美国国家卫生研究院;
关键词
APOL1; mitochondria; chronic kidney disease; focal segmental glomerulosclerosis; genetic renal disease; LIPID-BINDING PROTEIN; DISEASE; CYTOTOXICITY; EXPRESSION; LOCALIZATION; MACHINERIES; RESISTANCE; MECHANISM; IMMUNITY; IMPORT;
D O I
10.1681/ASN.2019020114
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Background Genetic Variants in Apolipoprotein L1 (APOL1) are associated with large increases in CKD rates among African Americans. Experiments in cell and mouse models suggest that these risk-related polymorphisms are toxic gain-of-function variants that cause kidney dysfunction, following a recessive mode of inheritance. Recent data in trypanosomes and in human cells indicate that such variants may cause toxicity through their effects on mitochondria. Methods To examine the molecular mechanisms underlying APOL1 risk variant-induced mitochondrial dysfunction, we generated tetracycline-inducible HEK293 T-REx cells stably expressing the APOL1 nonrisk G0 variant or APOL1 risk variants. Using these cells, we mapped the molecular pathway from mitochondrial import of APOL1 protein to APOL1-induced cell death with small interfering RNA knockdowns, pharmacologic inhibitors, blue native PAGE, mass spectrometry, and assessment of mitochondrial permeability transition pore function. Results We found that the APOL1 G0 and risk variant proteins shared the same import pathway into the mitochondrial matrix. Once inside, G0 remained monomeric, whereas risk variant proteins were prone to forming higher-order oligomers. Both nonrisk G0 and risk variant proteins bound components of the mitochondrial permeability transition pore, but only risk variant proteins activated pore opening. Blocking mitochondrial import of APOL1 risk variants largely eliminated oligomer formation and also rescued toxicity. Conclusions Our study illuminates important differences in the molecular behavior of APOL1 nonrisk and risk variants, and our observations suggest a mechanism that may explain the very different functional effects of these variants, despite the lack of consistently observed differences in trafficking patterns, intracellular localization, or binding partners. Variant-dependent differences in oligomerization pattern may underlie APOL1's recessive, gain-of-function biology.
引用
收藏
页码:2355 / 2368
页数:14
相关论文
共 50 条
  • [21] Mitochondrial DNA mutations cause resistance to opening of the permeability transition pore
    Mott, Justin L.
    Zhang, Dekui
    Chang, Shin-Wen
    Zassenhaus, H. Peter
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2006, 1757 (5-6): : 596 - 603
  • [22] Oxidative stress, mitochondrial permeability transition pore opening and cell death during hypoxia-reoxygenation in adult cardiomyocytes
    Assaly, Rana
    d'Anglemont de Tassigny, Alexandra
    Paradis, Stephanie
    Jacquin, Sophie
    Berdeaux, Alain
    Morin, Didier
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2012, 675 (1-3) : 6 - 14
  • [23] Transgenic expression of human APOL1 risk variants in podocytes induces kidney disease in mice
    Beckerman, Pazit
    Bi-Karchin, Jing
    Park, Ae Seo Deok
    Qiu, Chengxiang
    Dummer, Patrick D.
    Soomro, Irfana
    Boustany-Kari, Carine M.
    Pullen, Steven S.
    Miner, Jeffrey H.
    Hu, Chien-An A.
    Rohacs, Tibor
    Inoue, Kazunori
    Ishibe, Shuta
    Saleem, Moin A.
    Palmer, Matthew B.
    Cuervo, Ana Maria
    Kopp, Jeffrey B.
    Susztak, Katalin
    NATURE MEDICINE, 2017, 23 (04) : 429 - +
  • [24] Acute stress delays brain mitochondrial permeability transition pore opening
    Batandier, Cecile
    Poulet, Laurent
    Hininger, Isabelle
    Couturier, Karine
    Fontaine, Eric
    Roussel, Anne-Marie
    Canini, Frederic
    JOURNAL OF NEUROCHEMISTRY, 2014, 131 (03) : 314 - 322
  • [25] Inhibition of mitochondrial permeability transition pore opening: the holy grail of cardioprotection
    Heusch, Gerd
    Boengler, Kerstin
    Schulz, Rainer
    BASIC RESEARCH IN CARDIOLOGY, 2010, 105 (02) : 151 - 154
  • [26] Dynamics of the mitochondrial permeability transition pore: Transient and permanent opening events
    Boyman, Liron
    Coleman, Andrew K.
    Zhao, Guiling
    Wescott, Andrew P.
    Joca, Humberto C.
    Greiser, B. Maura
    Karbowski, Mariusz
    Ward, Chris W.
    Lederer, W. J.
    ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2019, 666 : 31 - 39
  • [27] Glutamate Interacts with VDAC and Modulates Opening of the Mitochondrial Permeability Transition Pore
    Dan Gincel
    Varda Shoshan-Barmatz
    Journal of Bioenergetics and Biomembranes, 2004, 36 : 179 - 186
  • [28] Involvement of mitochondrial permeability transition pore opening in α-bisabolol induced apoptosis
    Cavalieri, Elisabetta
    Bergamini, Christian
    Mariotto, Sofia
    Leoni, Serena
    Perbellini, Luigi
    Darra, Elena
    Suzuki, Hisanori
    Fato, Romana
    Lenaz, Giorgio
    FEBS JOURNAL, 2009, 276 (15) : 3990 - 4000
  • [29] Mitochondrial permeability transition and cell death: the role of cyclophilin D
    Javadov, Sabzali
    Kuznetsov, Andrey
    FRONTIERS IN PHYSIOLOGY, 2013, 4
  • [30] Sulfite disrupts brain mitochondrial energy homeostasis and induces mitochondrial permeability transition pore opening via thiol group modification
    Grings, Mateus
    Moura, Alana P.
    Amaral, Alexandre U.
    Parmeggiani, Belisa
    Gasparotto, Juciano
    Moreira, Jose C. F.
    Gelain, Daniel P.
    Wyse, Angela T. S.
    Wajner, Moacir
    Leipnitz, Guilhian
    BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 2014, 1842 (09): : 1413 - 1422