Bjorling problem for maximal surfaces in Lorentz-Minkowski space

被引:49
作者
Alías, LJ [1 ]
Chaves, RMB
Mira, P
机构
[1] Univ Murcia, Dept Matemat, E-30100 Murcia, Spain
[2] Univ Sao Paulo, Inst Matemat & Estat, BR-05315970 Sao Paulo, SP, Brazil
[3] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, E-30203 Murcia, Spain
关键词
D O I
10.1017/S0305004102006503
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a new approach to the local study of maximal surfaces in Lorentz-Minkowski space, based on a complex representation formula for this kind of surfaces. As an application we solve a certain Bjorling-type problem in Lorentz-Minkowski space and we obtain some results related to it. We also establish, springing from this complex representation, a way of introducing examples of maximal surfaces with interesting prescribed geometric properties. Further applications of the complex representation let us inspect some known results from a different perspective, and show how our approach can be used to classify certain families of maximal surfaces.
引用
收藏
页码:289 / 316
页数:28
相关论文
共 21 条
[1]  
[Anonymous], LECT NOTES MATH
[2]  
BJORLING EG, 1844, ARCH MATH PHYS, V4, P290
[3]  
Calabi E., 1970, Proc Symp Pure Appl Math, V15, P223, DOI [10.1090/pspum/015/0264210, DOI 10.1090/PSPUM/015/0264210]
[4]   MAXIMAL SPACE-LIKE HYPERSURFACES IN LORENTZ-MINKOWSKI SPACES [J].
CHENG, SY ;
YAU, ST .
ANNALS OF MATHEMATICS, 1976, 104 (03) :407-419
[5]  
DIERKES U, 1992, SERIES COMPREHENSIVE, V295
[6]   Ruled Weingarten surfaces in Minkowski 3-space [J].
Dillen, F ;
Kühnel, W .
MANUSCRIPTA MATHEMATICA, 1999, 98 (03) :307-320
[7]  
Do Carmo Manfredo P, 2016, Differential geometry of curves & surfaces, Vsecond
[8]   GENERALIZED MAXIMAL SURFACES IN LORENTZ-MINKOWSKI SPACE L3 [J].
ESTUDILLO, FJM ;
ROMERO, A .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1992, 111 :515-524
[9]  
ESTUDILLO FJM, 1991, GEOMETRIAE DEDICATA, V38, P167
[10]  
Folland G. B., 1976, MATH NOTES