p-adic Colombeau-Egorov type theory of generalized functions

被引:7
作者
Albeverio, S
Khrennikov, AY
Shelkovich, VM
机构
[1] St Petersburg State Architecture & Civil Engn Uni, St Petersburg 198005, Russia
[2] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany
[3] Vaxjo Univ, Int Ctr Math Modelling Phys & Cognit Sci, MSI, SE-35195 Vaxjo, Sweden
关键词
p-adic Colombeau-Egorov type algebra; product of Bruhat-Schwartz distributions (generalized functions); Fourier-transform; Vladimirov's pseudodifferential operator;
D O I
10.1002/mana.200310222
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The p-adic Colombeau-Egorov algebra of generalized functions on Q(p)(n) is constructed. For generalized functions the operations of multiplication, Fourier-transform, convolution, taking pointvalues are defined. The operations of (fractional) partial differentiation and (fractional) partial integration are introduced by the Vladimirov's pseudodifferential operator. The products of Bruhat-Schwartz distributions are well defined as elements of this algebra. In contrast to the "usual" Colombeau and Egorov C-theories, where generalized functions on R-n are not determined by their pointvalues on R-n, p-adic Colombeau-Egorov generalized functions are uniquely determined by their pointvalues on Q(p)(n). (C) 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:3 / 16
页数:14
相关论文
共 39 条
[1]   p-adic Hilbert space representation of quantum systems with an infinite number of degrees of freedom [J].
Albeverio, S ;
Khrennikov, A .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1996, 10 (13-14) :1665-1673
[2]   Representations of the Weyl group in spaces of square integrable functions with respect to p-adic valued Gaussian distributions [J].
Albeverio, S ;
Khrennikov, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (17) :5515-5527
[3]  
Albeverio S., 1996, STOCHASTICS STOCHAST, V56, P127
[4]  
ALBEVERIO S, 1996, STOCHASTIC ANAL RAND, V10, P1
[5]  
[Anonymous], MOD PHYS LETT A
[6]  
[Anonymous], 1994, P ADIC ANAL MATH PHY
[7]  
AREFEVA Y, 1998, PHYS LETT B, V209, P445
[8]  
Bruhat F., 1961, B SOC MATH FRANCE, V89, P43
[9]  
Colombeau J.F., 1985, ELEMENTARY INTRO NEW
[10]  
Danilov VG, 2003, HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, P483