ULAM-GAVRUTA-RASSIAS STABILITY OF AN ADDITIVE FUNCTIONAL INEQUALITY IN FUZZY NORMED MODULES

被引:0
作者
Cho, Yeol Je [1 ,2 ,3 ]
Saadati, Reza [4 ]
Yang, Young-Oh [5 ]
机构
[1] Gyeongsang Natl Univ, Dept Math Educ, Chinju 660701, South Korea
[2] Gyeongsang Natl Univ, RINS, Chinju 660701, South Korea
[3] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[4] Iran Univ Sci & Technol, Dept Math, Tehran, Iran
[5] Jeju Natl Univ, Dept Math, Cheju 690756, South Korea
基金
新加坡国家研究基金会;
关键词
Functional equation; fixed point; generalized Hyers-Ulam stability; functional inequality; linear mapping; fuzzy normed module; fuzzy C*-algebra; C-ASTERISK-ALGEBRAS; HOMOMORPHISMS; DERIVATIONS; EQUATION; SPACES;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we investigate the following additive functional inequality: N(f(x) + f(y) + f(z) + f(w), t) >= N (f(x) + f(y + z + w), t) in fuzzy normed modules over a fuzzy C*-algebra, which is applied to understand homomorphisms in fuzzy C*-algebras.
引用
收藏
页码:409 / 417
页数:9
相关论文
共 32 条
[1]   Nonlinear L-Fuzzy stability of cubic functional equations [J].
Agarwal, Ravi P. ;
Cho, Yeol Je ;
Saadati, Reza ;
Wang, Shenghua .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
[2]  
[Anonymous], 1950, J MATH SOC JPN, DOI DOI 10.2969/JMSJ/00210064
[3]  
[Anonymous], DISCRETE DYN NAT SOC
[4]   Fixed point methods for the generalized stability of functional equations in a single variable [J].
Cadariu, Liviu ;
Radu, Viorel .
FIXED POINT THEORY AND APPLICATIONS, 2008, 2008 (1)
[5]  
Cdariu L., 2003, J Inequal Pure Appl Math, V4, P4
[6]  
Cdariu L., 2004, Grazer Mathematische Berichte, V346, P43
[7]  
Cho Y.J., 2013, SPRINGER OPTIMIZATIO, V86
[8]   Lattictic non-archimedean random stability of ACQ functional equation [J].
Cho, Yeol Je ;
Saadati, Reza .
ADVANCES IN DIFFERENCE EQUATIONS, 2011,
[9]   A FIXED POINT THEOREM OF ALTERNATIVE FOR CONTRACTIONS ON A GENERALIZED COMPLETE METRIC SPACE [J].
DIAZ, JB ;
MARGOLIS, B .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1968, 74 (02) :305-&
[10]   On the Hyers-Ulam-Rassias stability of an additive functional equation in quasi-Banach spaces [J].
Eskandani, G. Zamani .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) :405-409